- -

A class of ideals in intermediate rings of continuous functions

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

A class of ideals in intermediate rings of continuous functions

Show full item record

Bag, S.; Acharyya, SK.; Mandal, D. (2019). A class of ideals in intermediate rings of continuous functions. Applied General Topology. 20(1):109-117. https://doi.org/10.4995/agt.2019.10171

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/118964

Files in this item

Item Metadata

Title: A class of ideals in intermediate rings of continuous functions
Author:
Issued date:
Abstract:
[EN] For any completely regular Hausdorff topological space X, an intermediate ring A(X) of continuous functions stands for any ring lying between C∗(X) and C(X). It is a rather recently established fact ...[+]
Subjects: P-space , Almost P-space , UMP-space , Z-ideal , Z◦-ideal , ƷA-ideal
Copyrigths: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Source:
Applied General Topology. (issn: 1576-9402 ) (eissn: 1989-4147 )
DOI: 10.4995/agt.2019.10171
Publisher:
Universitat Politècnica de València
Publisher version: https://doi.org/10.4995/agt.2019.10171
Type: Artículo

References

S. K. Acharyya and B. Bose, A correspondence between ideals and z-filters for certain rings of continuous functions-some remarks, Topology Appl. 160 (2013), 1603-1605. https://doi.org/10.1016/j.topol.2013.06.011

H. Azadi,M. Henriksen and E. Momtahan, Some properties of algebra of real valued measurable functions, Acta. Math. Hunger 124 (2009), 15-23. https://doi.org/10.1007/s10474-009-8138-6

F. Azarpanah, O.A.S. Karamzadeh and R. A. Aliabad, On z◦-ideals of C(X), Fund.Math. 160 (1999), 15-25. [+]
S. K. Acharyya and B. Bose, A correspondence between ideals and z-filters for certain rings of continuous functions-some remarks, Topology Appl. 160 (2013), 1603-1605. https://doi.org/10.1016/j.topol.2013.06.011

H. Azadi,M. Henriksen and E. Momtahan, Some properties of algebra of real valued measurable functions, Acta. Math. Hunger 124 (2009), 15-23. https://doi.org/10.1007/s10474-009-8138-6

F. Azarpanah, O.A.S. Karamzadeh and R. A. Aliabad, On z◦-ideals of C(X), Fund.Math. 160 (1999), 15-25.

F. Azarpanah, O. A. S. Karamzadeh and A. Rezai Aliabad, Onideals consisting entirely of zero Divisors, Communications in Algebra 28 (2000), 1061-1073. https://doi.org/10.1080/00927870008826878

S. Bag, S. K. Acharyya and D. Mandal, z◦-ideals in intermediate rings of ordered field valued continuous functions, communicated.

B. Banerjee, S. K. Ghosh and M. Henriksen, Unions of minimal prime ideals in rings of continuous functions on a compact spaces, Algebra Universalis 62 (2009), 239-246. https://doi.org/10.1007/s00012-010-0051-x

L. H. Byun and S. Watson, Prime and maximals ideal in subrings of C(X) , Topology Appl. 40 (1991), 45-62

L. Gillman and M. Jerison, Rings of continuous functions, New York: Van Nostrand Reinhold Co., 1960.

L. Gilmann and M. Henriksen, Concerning rings of continuous functions, Trans. Amer. Math. Soc. 77 (1954), 340-362. https://doi.org/10.1090/s0002-9947-1954-0063646-5

M. Henriksen and M. Jerison, The space of minimal prime ideals of a commutative ring, Trans. Amer. Math. Soc. 115 (1965), 110-130. https://doi.org/10.1090/s0002-9947-1965-0194880-9

W. Murray, J. Sack, S. Watson, P-space and intermediate rings of continuous functions, Rocky Mountain J. Math. 47 (2017), 2757-2775. https://doi.org/10.1216/rmj-2017-47-8-2757

J. Kist, Minimal prime ideals in commutative semigroups, Proc. London Math. Soc. 13(1963), 31-50. https://doi.org/10.1112/plms/s3-13.1.31

R. Levy, Almost p-spaces, Canad. J. Math. 29 (1977) 284-288.

G. Mason, Prime ideals and quotient rings of reduced rings, Math. Japon 34 (1989),941-956.

P. Panman, J. Sack and S. Watson, Correspondences between ideals and z-filters for rings of continuous functions between C∗ and C, Commentationes Mathematicae 52,no. 1, (2012) 11-20.

J. Sack and S. Watson, C and C∗ among intermediate rings, Topology Proceedings 43(2014), 69-82.

J. Sack and S. Watson, Characterizing C(X) among intermediate C-rings on X, Topology Proceedings 45 (2015), 301-313.

[-]

This item appears in the following Collection(s)

Show full item record