Mostrar el registro sencillo del ítem
dc.contributor.author | Gonzalez-Camejo, Josue | es_ES |
dc.contributor.author | Barat, Ramón | es_ES |
dc.contributor.author | Ruano García, María Victoria | es_ES |
dc.contributor.author | Seco Torrecillas, Aurora | es_ES |
dc.contributor.author | Ferrer, J. | es_ES |
dc.date.accessioned | 2019-04-14T20:01:16Z | |
dc.date.available | 2019-04-14T20:01:16Z | |
dc.date.issued | 2018 | es_ES |
dc.identifier.issn | 0273-1223 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/119395 | |
dc.description.abstract | [EN] As microalgae have the ability to simultaneously remove nutrients from wastewater streams while producing valuable biomass, microalgae-based wastewater treatment is a win-win strategy. Although recent advances have been made in this field in lab conditions, the transition to outdoor conditions on an industrial scale must be further investigated. In this work an outdoor pilot-scale membrane photobioreactor plant was operated for tertiary sewage treatment. The effects of different parameters on microalgae performance were studied including: temperature, light irradiance (solar and artificial irradiance), hydraulic retention time (HRT), biomass retention time (BRT), air sparging system and influent nutrient concentration. In addition the competition between microalgae and ammonium oxidising bacteria for ammonium was also evaluated. Maximum nitrogen and phosphorus removal rates of 12.5 +/- 4.2 mgN.L-1.d(-1) and 1.5 +/- 0.4 mgP.L-1.d(-1), respectively, were achieved at a BRT of 4.5 days and HRT of 2.5 days, while a maximum biomass productivity of 78 +/- 13 mgVSS.L-1.d(-1 )(VSS: volatile suspended solids) was reached. While the results obtained so far are promising, they need to be improved to make the transition to industrial scale operations feasible. | es_ES |
dc.description.sponsorship | This research work has been supported by the Spanish Ministry of Economy and Competitiveness (MINECO, CTM2011-28595-C02-01 and CTM2011-28595-C02-02) jointly with the European Regional Development Fund (ERDF), both of which are gratefully acknowledged. It was also supported by the Spanish Ministry of Education, Culture and Sport via a pre-doctoral FPU fellowship to author J. Gonzalez-Camejo (FPU14/05082). | |
dc.language | Inglés | es_ES |
dc.publisher | IWA Publishing | es_ES |
dc.relation.ispartof | Water Science & Technology | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Flat-panel | es_ES |
dc.subject | Membrane photobioreactor | es_ES |
dc.subject | Microalgae | es_ES |
dc.subject | Outdoor | es_ES |
dc.subject | Pilot plant | es_ES |
dc.subject | Wastewater treatment | es_ES |
dc.subject.classification | TECNOLOGIA DEL MEDIO AMBIENTE | es_ES |
dc.subject.classification | INGENIERIA HIDRAULICA | es_ES |
dc.title | Outdoor flat-panel membrane photobioreactor to treat the effluent of an anaerobic membrane bioreactor. Influence of operating, design, and environmental conditions | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.2166/wst.2018.259 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//CTM2011-28595-C02-01/ES/MODELACION Y CONTROL DE LA RECUPERACION COMO BIOGAS DE LA ENERGIA DE LA MATERIA ORGANICA Y NUTRIENTES DEL AGUA RESIDUAL, ACOPLANDO UN ANBRM Y UN CULTIVO DE MICROALGAS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MECD//FPU2014-05082/ES/FPU2014-05082/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.date.embargoEndDate | 2019-07-01 | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Ingeniería del Agua y del Medio Ambiente - Institut Universitari d'Enginyeria de l'Aigua i Medi Ambient | es_ES |
dc.description.bibliographicCitation | Gonzalez-Camejo, J.; Barat, R.; Ruano García, MV.; Seco Torrecillas, A.; Ferrer, J. (2018). Outdoor flat-panel membrane photobioreactor to treat the effluent of an anaerobic membrane bioreactor. Influence of operating, design, and environmental conditions. Water Science & Technology. 78(1):195-206. https://doi.org/10.2166/wst.2018.259 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://doi.org/10.2166/wst.2018.259 | es_ES |
dc.description.upvformatpinicio | 195 | es_ES |
dc.description.upvformatpfin | 206 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 78 | es_ES |
dc.description.issue | 1 | es_ES |
dc.identifier.pmid | 30101802 | |
dc.identifier.pmcid | PMCwst_2018_259 | |
dc.relation.pasarela | S\364168 | es_ES |
dc.contributor.funder | Ministerio de Educación, Cultura y Deporte | es_ES |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.description.references | Arbib, Z., Ruiz, J., Álvarez-Díaz, P., Garrido-Pérez, C., Barragan, J., & Perales, J. A. (2013). Long term outdoor operation of a tubular airlift pilot photobioreactor and a high rate algal pond as tertiary treatment of urban wastewater. Ecological Engineering, 52, 143-153. doi:10.1016/j.ecoleng.2012.12.089 | es_ES |
dc.description.references | Arias, D. M., Uggetti, E., García-Galán, M. J., & García, J. (2017). Cultivation and selection of cyanobacteria in a closed photobioreactor used for secondary effluent and digestate treatment. Science of The Total Environment, 587-588, 157-167. doi:10.1016/j.scitotenv.2017.02.097 | es_ES |
dc.description.references | Feng, P., Deng, Z., Hu, Z., & Fan, L. (2011). Lipid accumulation and growth of Chlorella zofingiensis in flat plate photobioreactors outdoors. Bioresource Technology, 102(22), 10577-10584. doi:10.1016/j.biortech.2011.08.109 | es_ES |
dc.description.references | Gao, F., Li, C., Yang, Z.-H., Zeng, G.-M., Feng, L.-J., Liu, J., … Cai, H. (2016). Continuous microalgae cultivation in aquaculture wastewater by a membrane photobioreactor for biomass production and nutrients removal. Ecological Engineering, 92, 55-61. doi:10.1016/j.ecoleng.2016.03.046 | es_ES |
dc.description.references | Giménez, J. B., Robles, A., Carretero, L., Durán, F., Ruano, M. V., Gatti, M. N., … Seco, A. (2011). Experimental study of the anaerobic urban wastewater treatment in a submerged hollow-fibre membrane bioreactor at pilot scale. Bioresource Technology, 102(19), 8799-8806. doi:10.1016/j.biortech.2011.07.014 | es_ES |
dc.description.references | González-Camejo, J., Serna-García, R., Viruela, A., Pachés, M., Durán, F., Robles, A., … Seco, A. (2017). Short and long-term experiments on the effect of sulphide on microalgae cultivation in tertiary sewage treatment. Bioresource Technology, 244, 15-22. doi:10.1016/j.biortech.2017.07.126 | es_ES |
dc.description.references | González-Camejo, J., Barat, R., Pachés, M., Murgui, M., Seco, A., & Ferrer, J. (2017). Wastewater nutrient removal in a mixed microalgae–bacteria culture: effect of light and temperature on the microalgae–bacteria competition. Environmental Technology, 39(4), 503-515. doi:10.1080/09593330.2017.1305001 | es_ES |
dc.description.references | Gouveia, L., Graça, S., Sousa, C., Ambrosano, L., Ribeiro, B., Botrel, E. P., … Silva, C. M. (2016). Microalgae biomass production using wastewater: Treatment and costs. Algal Research, 16, 167-176. doi:10.1016/j.algal.2016.03.010 | es_ES |
dc.description.references | Kim, K., Choi, J., Ji, Y., Park, S., Do, H., Hwang, C., … Holzapfel, W. (2014). Impact of bubble size on growth and CO 2 uptake of Arthrospira ( Spirulina ) platensis KMMCC CY-007. Bioresource Technology, 170, 310-315. doi:10.1016/j.biortech.2014.08.034 | es_ES |
dc.description.references | Leão, P. N., Vasconcelos, M. T. S. D., & Vasconcelos, V. M. (2009). Allelopathy in freshwater cyanobacteria. Critical Reviews in Microbiology, 35(4), 271-282. doi:10.3109/10408410902823705 | es_ES |
dc.description.references | Ledda, C., Idà, A., Allemand, D., Mariani, P., & Adani, F. (2015). Production of wild Chlorella sp. cultivated in digested and membrane-pretreated swine manure derived from a full-scale operation plant. Algal Research, 12, 68-73. doi:10.1016/j.algal.2015.08.010 | es_ES |
dc.description.references | Pachés, M., Romero, I., Hermosilla, Z., & Martinez-Guijarro, R. (2012). PHYMED: An ecological classification system for the Water Framework Directive based on phytoplankton community composition. Ecological Indicators, 19, 15-23. doi:10.1016/j.ecolind.2011.07.003 | es_ES |
dc.description.references | Ruiz-Martinez, A., Serralta, J., Pachés, M., Seco, A., & Ferrer, J. (2014). Mixed microalgae culture for ammonium removal in the absence of phosphorus: Effect of phosphorus supplementation and process modeling. Process Biochemistry, 49(12), 2249-2257. doi:10.1016/j.procbio.2014.09.002 | es_ES |
dc.description.references | Su, Y., Mennerich, A., & Urban, B. (2012). Coupled nutrient removal and biomass production with mixed algal culture: Impact of biotic and abiotic factors. Bioresource Technology, 118, 469-476. doi:10.1016/j.biortech.2012.05.093 | es_ES |
dc.description.references | Tan, X.-B., Zhang, Y.-L., Yang, L.-B., Chu, H.-Q., & Guo, J. (2016). Outdoor cultures of Chlorella pyrenoidosa in the effluent of anaerobically digested activated sludge: The effects of pH and free ammonia. Bioresource Technology, 200, 606-615. doi:10.1016/j.biortech.2015.10.095 | es_ES |
dc.description.references | Viruela, A., Murgui, M., Gómez-Gil, T., Durán, F., Robles, Á., Ruano, M. V., … Seco, A. (2016). Water resource recovery by means of microalgae cultivation in outdoor photobioreactors using the effluent from an anaerobic membrane bioreactor fed with pre-treated sewage. Bioresource Technology, 218, 447-454. doi:10.1016/j.biortech.2016.06.116 | es_ES |
dc.description.references | Whitton, R., Le Mével, A., Pidou, M., Ometto, F., Villa, R., & Jefferson, B. (2016). Influence of microalgal N and P composition on wastewater nutrient remediation. Water Research, 91, 371-378. doi:10.1016/j.watres.2015.12.054 | es_ES |
dc.description.references | Woertz, I., Feffer, A., Lundquist, T., & Nelson, Y. (2009). Algae Grown on Dairy and Municipal Wastewater for Simultaneous Nutrient Removal and Lipid Production for Biofuel Feedstock. Journal of Environmental Engineering, 135(11), 1115-1122. doi:10.1061/(asce)ee.1943-7870.0000129 | es_ES |
dc.description.references | Wu, Y.-H., Zhu, S.-F., Yu, Y., Shi, X.-J., Wu, G.-X., & Hu, H.-Y. (2017). Mixed cultivation as an effective approach to enhance microalgal biomass and triacylglycerol production in domestic secondary effluent. Chemical Engineering Journal, 328, 665-672. doi:10.1016/j.cej.2017.07.088 | es_ES |
dc.description.references | Xu, M., Li, P., Tang, T., & Hu, Z. (2015). Roles of SRT and HRT of an algal membrane bioreactor system with a tanks-in-series configuration for secondary wastewater effluent polishing. Ecological Engineering, 85, 257-264. doi:10.1016/j.ecoleng.2015.09.064 | es_ES |