- -

Optimal Model for Path Loss Predictions using Feed-Forward Neural Networks

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Optimal Model for Path Loss Predictions using Feed-Forward Neural Networks

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Popoola, Segun I. es_ES
dc.contributor.author Adetiba, Emmanuel es_ES
dc.contributor.author Atayero, Aderemi A. es_ES
dc.contributor.author Faruk, Nasir es_ES
dc.contributor.author Tavares De Araujo Cesariny Calafate, Carlos Miguel es_ES
dc.date.accessioned 2019-04-25T20:01:54Z
dc.date.available 2019-04-25T20:01:54Z
dc.date.issued 2018 es_ES
dc.identifier.uri http://hdl.handle.net/10251/119577
dc.description.abstract [EN] In this paper, an optimal model is developed for path loss predictions using the Feed-Forward Neural Network (FFNN) algorithm. Drive test measurements were carried out in Canaanland Ota, Nigeria and Ilorin, Nigeria to obtain path loss data at varying distances from 11 different 1,800 MHz base station transmitters. Single-layered FFNNs were trained with normalized terrain profile data (longitude, latitude, elevation, altitude, clutter height) and normalized distances to produce the corresponding path loss values based on the Levenberg-Marquardt algorithm. The number of neurons in the hidden layer was varied (1-50) to determine the Artificial Neural Network (ANN) model with the best prediction accuracy. The performance of the ANN models was evaluated based on different metrics: Mean Absolute error (MAE), Mean Squared Error (MSE), Root Mean Squared Error (RMSE), standard deviation, and regression coefficient (R). Results of the machine learning processes show that the FNN architecture adopting a tangent activation function and 48 hidden neurons produced the least prediction error, with MAE, MSE, RMSE, standard deviation, and R values of 4.21 dB, 30.99 dB, 5.56 dB, 5.56 dB, and 0.89, respectively. Regarding generalization ability, the predictions of the optimal ANN model yielded MAE, MSE, RMSE, standard deviation, and R values of 4.74 dB, 39.38 dB, 6.27 dB, 6.27 dB, and 0.86, respectively, when tested with new data not previously included in the training process. Compared to the Hata, COST 231, ECC-33, and Egli models, the developed ANN model performed better in terms of prediction accuracy and generalization ability. es_ES
dc.description.sponsorship This work was supported by Covenant University [grant number CUCRID-SMARTCU-000343].
dc.language Inglés es_ES
dc.publisher Cogent OA es_ES
dc.relation.ispartof Cogent Engineering es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Path loss es_ES
dc.subject Received signal strength es_ES
dc.subject Scale conjugate gradient es_ES
dc.subject Radio network planning es_ES
dc.subject Artificial Neural Network es_ES
dc.subject.classification ARQUITECTURA Y TECNOLOGIA DE COMPUTADORES es_ES
dc.title Optimal Model for Path Loss Predictions using Feed-Forward Neural Networks es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1080/23311916.2018.1444345 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CUCRID//SMARTCU-000343/
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors es_ES
dc.description.bibliographicCitation Popoola, SI.; Adetiba, E.; Atayero, AA.; Faruk, N.; Tavares De Araujo Cesariny Calafate, CM. (2018). Optimal Model for Path Loss Predictions using Feed-Forward Neural Networks. Cogent Engineering. 5:1-19. https://doi.org/10.1080/23311916.2018.1444345 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1080/23311916.2018.1444345 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 19 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 5 es_ES
dc.identifier.eissn 2331-1916 es_ES
dc.relation.pasarela S\354635 es_ES
dc.contributor.funder Covenant University, Nigeria
dc.contributor.funder Covenant University Centre for Research, Innovation and Discovery, Nigeria es_ES
dc.description.references Adetiba, E., Iweanya, V. C., Popoola, S. I., Adetiba, J. N., & Menon, C. (2017). Automated detection of heart defects in athletes based on electrocardiography and artificial neural network. Cogent Engineering, 4(1). doi:10.1080/23311916.2017.1411220 es_ES
dc.description.references Adetiba, E., & Olugbara, O. O. (2015). Lung Cancer Prediction Using Neural Network Ensemble with Histogram of Oriented Gradient Genomic Features. The Scientific World Journal, 2015, 1-17. doi:10.1155/2015/786013 es_ES
dc.description.references Adeyemo, Z. K., Ogunremi, O. K., & Ojedokun, I. A. (2016). Optimization of Okumura-Hata Model for Long Term Evolution Network Deployment in Lagos, Nigeria. International Journal on Communications Antenna and Propagation (IRECAP), 6(3), 146. doi:10.15866/irecap.v6i3.9012 es_ES
dc.description.references Akhoondzadeh-Asl, L., & Noori, N. (2007). Modification and Tuning of the Universal Okumura-Hata Model for Radio Wave Propagation Predictions. 2007 Asia-Pacific Microwave Conference. doi:10.1109/apmc.2007.4554925 es_ES
dc.description.references Al Salameh, M. S., & Al-Zu’bi, M. M. (2015). Prediction of radiowave propagation for wireless cellular networks in Jordan.Paper presented at the Knowledge and Smart Technology (KST), 2015 7th International Conference on. es_ES
dc.description.references Alamoud, M. A., & Schutz, W. (2012). Okumura-hata model tuning for TETRA mobile radio networks in Saudi Arabia. 2012 2nd International Conference on Advances in Computational Tools for Engineering Applications (ACTEA). doi:10.1109/ictea.2012.6462901 es_ES
dc.description.references Armenta, A., Serrano, A., Cabrera, M., & Conte, R. (2011). The new digital divide: the confluence of broadband penetration, sustainable development, technology adoption and community participation. Information Technology for Development, 18(4), 345-353. doi:10.1080/02681102.2011.625925 es_ES
dc.description.references Begovic, P., Behlilovic, N., & Avdic, E. (2012). Applicability evaluation of Okumura, Ericsson 9999 and winner propagation models for coverage planning in 3.5 GHZ WiMAX systems. es_ES
dc.description.references Erceg, V., Greenstein, L. J., Tjandra, S. Y., Parkoff, S. R., Gupta, A., Kulic, B., … Bianchi, R. (1999). An empirically based path loss model for wireless channels in suburban environments. IEEE Journal on Selected Areas in Communications, 17(7), 1205-1211. doi:10.1109/49.778178 es_ES
dc.description.references Farhoud, M., El-Keyi, A., & Sultan, A. (2013). Empirical correction of the Okumura-Hata model for the 900 MHz band in Egypt. 2013 Third International Conference on Communications and Information Technology (ICCIT). doi:10.1109/iccitechnology.2013.6579585 es_ES
dc.description.references Faruk, N., Adediran, Y. A., & Ayeni, A. A. (2013). Error bounds of empirical path loss models at VHF/UHF bands in Kwara State, Nigeria. Eurocon 2013. doi:10.1109/eurocon.2013.6625043 es_ES
dc.description.references Faruk, N., Ayeni, A., & Adediran, Y. A. (2013). ON THE STUDY OF EMPIRICAL PATH LOSS MODELS FOR ACCURATE PREDICTION OF TV SIGNAL FOR SECONDARY USERS. Progress In Electromagnetics Research B, 49, 155-176. doi:10.2528/pierb13011306 es_ES
dc.description.references Hata, M. (1980). Empirical formula for propagation loss in land mobile radio services. IEEE Transactions on Vehicular Technology, 29(3), 317-325. doi:10.1109/t-vt.1980.23859 es_ES
dc.description.references Hufford, G. A. (1952). An integral equation approach to the problem of wave propagation over an irregular surface. Quarterly of Applied Mathematics, 9(4), 391-404. doi:10.1090/qam/44350 es_ES
dc.description.references Ibhaze, A. E., Ajose, S. O., Atayero, A. A.-A., & Idachaba, F. E. (2016). Developing smart cities through optimal wireless mobile network.Paper presented at the emerging technologies and innovative business practices for the transformation of societies (EmergiTech), IEEE international conference on. es_ES
dc.description.references Luebbers, R. (1984). Propagation prediction for hilly terrain using GTD wedge diffraction. IEEE Transactions on Antennas and Propagation, 32(9), 951-955. doi:10.1109/tap.1984.1143449 es_ES
dc.description.references Matthews, V. O., Osuoyah, Q., Popoola, S. I., Adetiba, E., & Atayero, A. A. (2017, July 5–7). C-BRIG: A network architecture for real-time information exchange in smart and connected campuses. In Lecture notes in engineering and computer science: Proceedings of the world congress on engineering 2017 (pp. 398–401). London. es_ES
dc.description.references Medeisis, A., & Kajackas, A. (s. f.). On the use of the universal Okumura-Hata propagation prediction model in rural areas. VTC2000-Spring. 2000 IEEE 51st Vehicular Technology Conference Proceedings (Cat. No.00CH37026). doi:10.1109/vetecs.2000.851585 es_ES
dc.description.references Mohtashami, V., & Shishegar, A. A. (2012). Modified wavefront decomposition method for fast and accurate ray-tracing simulation. IET Microwaves, Antennas & Propagation, 6(3), 295. doi:10.1049/iet-map.2011.0264 es_ES
dc.description.references Nimavat, V. D., & Kulkarni, G. (2012). Simulation and performance evaluation of GSM propagation channel under the urban, suburban and rural environments.Paper presented at the communication, information & computing technology (ICCICT), 2012 international conference on. es_ES
dc.description.references . O. F. O. (2014). RADIO FREQUENCY OPTIMIZATION OF MOBILE NETWORKS IN ABEOKUTA, NIGERIA FOR IMPROVED QUALITY OF SERVICE. International Journal of Research in Engineering and Technology, 03(08), 174-180. doi:10.15623/ijret.2014.0308027 es_ES
dc.description.references Phillips, C., Sicker, D., & Grunwald, D. (2013). A Survey of Wireless Path Loss Prediction and Coverage Mapping Methods. IEEE Communications Surveys & Tutorials, 15(1), 255-270. doi:10.1109/surv.2012.022412.00172 es_ES
dc.description.references Popoola, S. I., Atayero, A. A., Badejo, J. A., John, T. M., Odukoya, J. A., & Omole, D. O. (2018). Learning analytics for smart campus: Data on academic performances of engineering undergraduates in Nigerian private university. Data in Brief, 17, 76-94. doi:10.1016/j.dib.2017.12.059 es_ES
dc.description.references Popoola, S. I., Atayero, A. A., & Faruk, N. (2018). Received signal strength and local terrain profile data for radio network planning and optimization at GSM frequency bands. Data in Brief, 16, 972-981. doi:10.1016/j.dib.2017.12.036 es_ES
dc.description.references Popoola, S. I., Atayero, A. A., Faruk, N., & Badejo, J. A. (2018). Data on the key performance indicators for quality of service of GSM networks in Nigeria. Data in Brief, 16, 914-928. doi:10.1016/j.dib.2017.12.005 es_ES
dc.description.references Popoola, S. I., Atayero, A. A., Faruk, N., Calafate, C. T., Adetiba, E., & Matthews, V. O. (2017, July 5–7). Calibrating the standard path loss model for urban environments using field measurements and geospatial data.Paper presented at the Lecture notes in engineering and computer science: Proceedings of the world congress on engineering 2017 (pp. 513–518). London. es_ES
dc.description.references Popoola, S. I., Atayero, A. A., Faruk, N., Calafate, C. T., Olawoyin, L. A., & Matthews, V. O. (2017). Standard propagation model tuning for path loss predictions in built-up environments.Paper presented at the International Conference on Computational Science and Its Applications. es_ES
dc.description.references Popoola, S. I., Atayero, A. A., Okanlawon, T. T., Omopariola, B. I., & Takpor, O. A. (2018). Smart campus: Data on energy consumption in an ICT-driven university. Data in Brief, 16, 780-793. doi:10.1016/j.dib.2017.11.091 es_ES
dc.description.references Popoola, S. I., Badejo, J. A., Ojewande, S. O., & Atayero, A. (2017, October 25–27). Statistical evaluation of quality of service offered by GSM network operators in Nigeria. In Lecture notes in engineering and computer science: Proceedings of the world congress on engineering and computer science 2017 (pp. 69–73). San Francisco. es_ES
dc.description.references Popoola, S. I., Misra, S., & Atayero, A. A. (2018). Outdoor path loss predictions based on extreme learning machine. Wireless Personal Communications, 1–20. es_ES
dc.description.references Rath, H. K., Verma, S., Simha, A., & Karandikar, A. (2016). Path Loss model for Indian terrain-empirical approach.Paper presented at the communication (NCC), 2016 twenty second national conference on. es_ES
dc.description.references Salman, M. A., Popoola, S. I., Faruk, N., Surajudeen-Bakinde, N., Oloyede, A. A., & Olawoyin, L. A. (2017). Adaptive neuro-fuzzy model for path loss prediction in the VHF band.Paper presented at the computing networking and informatics (ICCNI), 2017 international conference on. es_ES
dc.description.references Schneider, I., Lambrecht, F., & Baier, A. (s. f.). Enhancement of the Okumura-Hata propagation model using detailed morphological and building data. Proceedings of PIMRC ’96 - 7th International Symposium on Personal, Indoor, and Mobile Communications. doi:10.1109/pimrc.1996.567508 es_ES
dc.description.references Sotiroudis, S. P., & Siakavara, K. (2015). Mobile radio propagation path loss prediction using Artificial Neural Networks with optimal input information for urban environments. AEU - International Journal of Electronics and Communications, 69(10), 1453-1463. doi:10.1016/j.aeue.2015.06.014 es_ES
dc.description.references Zelley, C. A., & Constantinou, C. C. (1999). A three-dimensional parabolic equation applied to VHF/UHF propagation over irregular terrain. IEEE Transactions on Antennas and Propagation, 47(10), 1586-1596. doi:10.1109/8.805904 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem