- -

Numerical modeling of ground thermal response with borehole heat exchangers connected in parallel

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Numerical modeling of ground thermal response with borehole heat exchangers connected in parallel

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Monzó Cárcel, Patricia María es_ES
dc.contributor.author Puttige, Anjan Rao es_ES
dc.contributor.author Acuña, José es_ES
dc.contributor.author Mogensen, Palne es_ES
dc.contributor.author Cazorla-Marín, Antonio es_ES
dc.contributor.author Rodríguez, Juan es_ES
dc.contributor.author Montagud, C. es_ES
dc.contributor.author Cerdeira, Fernando es_ES
dc.date.accessioned 2019-04-26T20:01:47Z
dc.date.available 2019-04-26T20:01:47Z
dc.date.issued 2018 es_ES
dc.identifier.issn 0378-7788 es_ES
dc.identifier.uri http://hdl.handle.net/10251/119594
dc.description.abstract [EN] With bore fields for energy extraction and injection, it is often necessary to predict the temperature response to heat loads for many years ahead. Mathematical methods, both analytical and numerical, with different degrees of sophistication, are employed. Often the g-function concept is used, in which the borehole wall is assumed to have a uniform temperature and the heat injected is constant over time. Due to the unavoidable thermal resistance between the borehole wall and the circulating fluid and with varying heat flux along the boreholes, the concept of uniform borehole wall temperature is violated, which distorts heat flow distribution between boreholes. This aspect has often been disregarded. This paper describes improvements applied to a previous numerical model approach. Improvements aim at taking into account the effect of thermal resistance between the fluid and the borehole wall. The model employs a highly conductive material (HCM) embedded in the boreholes and connected to an HCM bar above the ground surface. The small temperature difference occurring within the HCM allows the ground to naturally control the conditions at the wall of all boreholes and the heat flow distribution to the boreholes. The thermal resistance between the fluid and the borehole wall is taken into account in the model by inserting a thermally resistive layer at the borehole wall. Also, the borehole ends are given a hemispherical shape to reduce the fluctuations in the temperature gradients there. The improvements to the HCM model are reflected in a changed distribution of the heat flow to the different boreholes. Changes increase with the number of boreholes. The improvements to the HCM model are further illustrated by predicting fluid temperatures for measured variable daily loads of two monitored GCHP installations. Predictions deviate from measured values with a mean absolute error within 1.1 and 1.6¿K. es_ES
dc.description.sponsorship The Swedish Energy Agency is acknowledged for financing this project. The authors thank Massimo Cimmino (Ecole Polytechnique de Montreal, Canada) for contributing to the generation of a particular solution with his approach.
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Energy and Buildings es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Borehole heat exchanger es_ES
dc.subject Numerical modeling es_ES
dc.subject Monitoring es_ES
dc.subject Fluid temperature prediction es_ES
dc.subject Boundary condition es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.subject.classification TERMODINAMICA APLICADA (UPV) es_ES
dc.title Numerical modeling of ground thermal response with borehole heat exchangers connected in parallel es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.enbuild.2018.04.057 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada es_ES
dc.description.bibliographicCitation Monzó Cárcel, PM.; Puttige, AR.; Acuña, J.; Mogensen, P.; Cazorla-Marín, A.; Rodríguez, J.; Montagud, C.... (2018). Numerical modeling of ground thermal response with borehole heat exchangers connected in parallel. Energy and Buildings. 172:371-384. https://doi.org/10.1016/j.enbuild.2018.04.057 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.enbuild.2018.04.057 es_ES
dc.description.upvformatpinicio 371 es_ES
dc.description.upvformatpfin 384 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 172 es_ES
dc.relation.pasarela S\362858 es_ES
dc.contributor.funder Swedish Energy Agency


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem