dc.contributor.author |
Lozano-Torres, Beatriz
|
es_ES |
dc.contributor.author |
Marcos Martínez, María Dolores
|
es_ES |
dc.contributor.author |
Pardo Vicente, María Teresa
|
es_ES |
dc.contributor.author |
Sancenón Galarza, Félix
|
es_ES |
dc.contributor.author |
Martínez-Máñez, Ramón
|
es_ES |
dc.contributor.author |
Rurack, K.
|
es_ES |
dc.date.accessioned |
2019-05-04T20:00:56Z |
|
dc.date.available |
2019-05-04T20:00:56Z |
|
dc.date.issued |
2018 |
es_ES |
dc.identifier.issn |
0095-8972 |
es_ES |
dc.identifier.uri |
http://hdl.handle.net/10251/119853 |
|
dc.description.abstract |
[EN] Probe 1, which contains an anilinopyridine chromophore and an aza-oxa macrocyclic subunit, presented an absorption band centered at 340 nm in acetonitrile. Addition of Fe(III), Cr(III) and Hg(II) induced the growth of a new absorption band at 430 nm (with color change from colorless to yellow), whereas in the presence of Cu(II), Zn(II) and Pb(II), less marked changes were observed. The color changes observed upon addition of Fe(III), Cr(III) and Hg(II) were ascribed to the formation of 1:1 stoichiometry complexes with probe 1. Coordination of Fe(III), Cr(III) and Hg(II) with the pyridine fragment of 1 induced an enhancement of the charge transfer character accompanied with a marked bathochromic shift that was reflected in a color change from colorless to yellow. The strength of the interaction between probe 1 and Fe(III) cation was modulated upon interaction with anions. Of all the anions tested, only cyanide was able to induce the bleaching of the yellow 1Fe(III) complex solution. This bleaching was ascribed to the formation of 1Fe(III)-CN complex that restored, to some extent, the optical features of the free probe allowing the chromogenic sensing of cyanide. Besides, 1Fe(III) complex was used to detect cyanide in acetonitrile-water 90:10 v/v mixtures with good recoveries. |
es_ES |
dc.description.sponsorship |
This work was supported by the Generalitat Valenciana [grant number PROMETEOII/2014/047]; Ministerio de Economia y Competitividad [grant number MAT2015-64139-C4-1-R], [grant number AGL2015-70235-C2-2-R (MINECO/FEDER)]. |
|
dc.language |
Inglés |
es_ES |
dc.publisher |
Taylor & Francis |
es_ES |
dc.relation.ispartof |
Journal of Coordination Chemistry |
es_ES |
dc.rights |
Reserva de todos los derechos |
es_ES |
dc.subject |
Anilinopyridine |
es_ES |
dc.subject |
Charge-transfer |
es_ES |
dc.subject |
Fe(III) complex |
es_ES |
dc.subject |
Chromogenic |
es_ES |
dc.subject |
Cyanide |
es_ES |
dc.subject.classification |
QUIMICA ORGANICA |
es_ES |
dc.subject.classification |
QUIMICA INORGANICA |
es_ES |
dc.title |
Anilinopyridine metal complexes for the selective chromogenic sensing of cyanide anion |
es_ES |
dc.type |
Artículo |
es_ES |
dc.identifier.doi |
10.1080/00958972.2018.1434719 |
es_ES |
dc.relation.projectID |
info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2014%2F047/ES/Nuevas aproximaciones para el diseño de materiales de liberación controlada y la detección de compuestos peligrosos/ |
es_ES |
dc.relation.projectID |
info:eu-repo/grantAgreement/MINECO//MAT2015-64139-C4-1-R/ES/NANOMATERIALES INTELIGENTES, SONDAS Y DISPOSITIVOS PARA EL DESARROLLO INTEGRADO DE NUEVAS HERRAMIENTAS APLICADAS AL CAMPO BIOMEDICO/ |
es_ES |
dc.relation.projectID |
info:eu-repo/grantAgreement/MINECO//AGL2015-70235-C2-2-R/ES/DESARROLLO DE SISTEMAS HIBRIDOS CON OPTIMIZACION DEL ANCLADO DE BIOMOLECULAS Y DISEÑADOS CON PROPIEDADES DE ENCAPSULACION Y LIBERACION CONTROLADA MEJORADAS/ |
es_ES |
dc.rights.accessRights |
Abierto |
es_ES |
dc.contributor.affiliation |
Universitat Politècnica de València. Departamento de Química - Departament de Química |
es_ES |
dc.description.bibliographicCitation |
Lozano-Torres, B.; Marcos Martínez, MD.; Pardo Vicente, MT.; Sancenón Galarza, F.; Martínez-Máñez, R.; Rurack, K. (2018). Anilinopyridine metal complexes for the selective chromogenic sensing of cyanide anion. Journal of Coordination Chemistry. 71(6):786-796. https://doi.org/10.1080/00958972.2018.1434719 |
es_ES |
dc.description.accrualMethod |
S |
es_ES |
dc.relation.publisherversion |
http://doi.org/10.1080/00958972.2018.1434719 |
es_ES |
dc.description.upvformatpinicio |
786 |
es_ES |
dc.description.upvformatpfin |
796 |
es_ES |
dc.type.version |
info:eu-repo/semantics/publishedVersion |
es_ES |
dc.description.volume |
71 |
es_ES |
dc.description.issue |
6 |
es_ES |
dc.relation.pasarela |
S\361852 |
es_ES |
dc.contributor.funder |
Generalitat Valenciana |
es_ES |
dc.contributor.funder |
Ministerio de Economía, Industria y Competitividad |
es_ES |
dc.description.references |
Boening, D. W., & Chew, C. M. (1999). Water, Air, and Soil Pollution, 109(1/4), 67-79. doi:10.1023/a:1005005117439 |
es_ES |
dc.description.references |
Tylleskar, T., Howlett, W. P., Rwiza, H. T., Aquilonius, S. M., Stalberg, E., Linden, B., … Rosling, H. (1993). Konzo: a distinct disease entity with selective upper motor neuron damage. Journal of Neurology, Neurosurgery & Psychiatry, 56(6), 638-643. doi:10.1136/jnnp.56.6.638 |
es_ES |
dc.description.references |
(a) WHO. Guidelines for Drinking-Water Quality, p. 342, World Health Organisation, Geneva, Switzerland (2011) |
es_ES |
dc.description.references |
Safavi, A., Maleki, N., & Shahbaazi, H. . (2004). Indirect determination of cyanide ion and hydrogen cyanide by adsorptive stripping voltammetry at a mercury electrode. Analytica Chimica Acta, 503(2), 213-221. doi:10.1016/j.aca.2003.10.032 |
es_ES |
dc.description.references |
Batista, R. M. F., Oliveira, E., Costa, S. P. G., Lodeiro, C., & Raposo, M. M. M. (2013). Cyanide and fluoride colorimetric sensing by novel imidazo-anthraquinones functionalised with indole and carbazole. Supramolecular Chemistry, 26(2), 71-80. doi:10.1080/10610278.2013.824082 |
es_ES |
dc.description.references |
Santos-Figueroa, L. E., Moragues, M. E., Climent, E., Agostini, A., Martínez-Máñez, R., & Sancenón, F. (2013). Chromogenic and fluorogenic chemosensors and reagents for anions. A comprehensive review of the years 2010–2011. Chemical Society Reviews, 42(8), 3489. doi:10.1039/c3cs35429f |
es_ES |
dc.description.references |
Wiskur, S. L., Ait-Haddou, H., Lavigne, J. J., & Anslyn, E. V. (2001). Teaching Old Indicators New Tricks. Accounts of Chemical Research, 34(12), 963-972. doi:10.1021/ar9600796 |
es_ES |
dc.description.references |
Kaur, K., Saini, R., Kumar, A., Luxami, V., Kaur, N., Singh, P., & Kumar, S. (2012). Chemodosimeters: An approach for detection and estimation of biologically and medically relevant metal ions, anions and thiols. Coordination Chemistry Reviews, 256(17-18), 1992-2028. doi:10.1016/j.ccr.2012.04.013 |
es_ES |
dc.description.references |
García-Acosta, B., Albiach-Martí, X., García, E., Gil, L., Martínez-Máñez, R., Rurack, K., … Soto, J. (2004). Coordinative and electrostatic forces in action: from the design of differential chromogenic anion sensors to selective carboxylate recognition. Chem. Commun., (7), 774-775. doi:10.1039/b314997h |
es_ES |
dc.description.references |
García-Acosta, B., Martínez-Máñez, R., Sancenón, F., Soto, J., Rurack, K., Spieles, M., … Gil, L. (2007). Ditopic N-Crowned 4-(p-Aminophenyl)-2,6-diphenylpyridines: Implications of Macrocycle Topology on the Spectroscopic Properties, Cation Complexation, and Differential Anion Responses. Inorganic Chemistry, 46(8), 3123-3135. doi:10.1021/ic062069z |
es_ES |
dc.description.references |
Verhoeven, J. W. (s. f.). Sigma-coupled Charge-transfer Probes of the Fluoroprobe and Fluorotrope Type. Topics in Fluorescence Spectroscopy, 249-284. doi:10.1007/0-387-23335-0_7 |
es_ES |
dc.description.references |
Kurihara, M., Kawashima, T., & Ozutsumi, K. (2000). Complexation of Cobalt(II), Nickel(II), and Copper(II) Ions with Pyridine, 2-Methylpyridine, 3-Methylpyridine, and 4-Methylpyridine in Acetonitrile. Zeitschrift für Naturforschung B, 55(3-4), 277-284. doi:10.1515/znb-2000-3-409 |
es_ES |
dc.description.references |
Xu, Z., Chen, X., Kim, H. N., & Yoon, J. (2010). Sensors for the optical detection ofcyanide ion. Chem. Soc. Rev., 39(1), 127-137. doi:10.1039/b907368j |
es_ES |