- -

Equivalent circuit and calculation of unbalanced power in three-wire three-phase linear networks

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Equivalent circuit and calculation of unbalanced power in three-wire three-phase linear networks

Show simple item record

Files in this item

dc.contributor.author Montoya-Mira, Rafael es_ES
dc.contributor.author Diez-Aznar, José-Manuel es_ES
dc.contributor.author Blasco Espinosa, Pedro Angel es_ES
dc.contributor.author Montoya Villena, Rafael es_ES
dc.date.accessioned 2019-05-06T20:01:31Z
dc.date.available 2019-05-06T20:01:31Z
dc.date.issued 2018 es_ES
dc.identifier.issn 1751-8687 es_ES
dc.identifier.uri http://hdl.handle.net/10251/119991
dc.description.abstract [EN] For analysis of three-wire three-phase linear systems, the transformations wye-delta and delta-wye from theorem of Kennelly are used. These transformations can be applied to balanced systems but not to unbalanced systems. This is due to the fact that zero-sequence voltages or zero-sequence currents are present in these types of connections. This modifies the value of the unbalance power in the load with respect to the generator. These zero-sequence voltages and currents that appear in generators and loads are not transferred over the network. The zero-sequence voltage in a delta-connected load and the zero-sequence current that is obtained using theorem of Kennelly in a star-connected load, or vice versa, cause different imbalance effects. Here, the equivalent circuit for any point of the system is developed. The impedances of the equivalent circuit in any node are calculated using line-to-line voltages and line currents. This equivalent circuit incorporates all energetic phenomena, including the unbalance of all downstream loads. For its verification, the phasor unbalance power is used. es_ES
dc.language Inglés es_ES
dc.publisher Institution of Electrical Engineers es_ES
dc.relation.ispartof IET Generation Transmission & Distribution es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Phasor measurement es_ES
dc.subject Electric power generation es_ES
dc.subject Equivalent circuits es_ES
dc.subject Equivalent circuit es_ES
dc.subject Unbalanced power calculation es_ES
dc.subject Three-wire three-phase linear network es_ES
dc.subject Wye-delta transformation es_ES
dc.subject Delta-wye transformation es_ES
dc.subject Kennelly theorem es_ES
dc.subject Zero-sequence voltage,zero-sequence current,delta-connected load,star-connected load,line-to-line voltage,line current,phasor unbalance power es_ES
dc.subject.classification INGENIERIA ELECTRICA es_ES
dc.title Equivalent circuit and calculation of unbalanced power in three-wire three-phase linear networks es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1049/iet-gtd.2017.0670 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Eléctrica - Departament d'Enginyeria Elèctrica es_ES
dc.description.bibliographicCitation Montoya-Mira, R.; Diez-Aznar, J.; Blasco Espinosa, PA.; Montoya Villena, R. (2018). Equivalent circuit and calculation of unbalanced power in three-wire three-phase linear networks. IET Generation Transmission & Distribution. 12(7):1466-1473. https://doi.org/10.1049/iet-gtd.2017.0670 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.org/10.1049/iet-gtd.2017.0670 es_ES
dc.description.upvformatpinicio 1466 es_ES
dc.description.upvformatpfin 1473 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 12 es_ES
dc.description.issue 7 es_ES
dc.relation.pasarela S\361627 es_ES
dc.description.references Emanuel, A. E. (1993). On the definition of power factor and apparent power in unbalanced polyphase circuits with sinusoidal voltage and currents. IEEE Transactions on Power Delivery, 8(3), 841-852. doi:10.1109/61.252612 es_ES
dc.description.references Jeon, S.-J. (2005). Definitions of Apparent Power and Power Factor in a Power System Having Transmission Lines With Unequal Resistances. IEEE Transactions on Power Delivery, 20(3), 1806-1811. doi:10.1109/tpwrd.2005.848658 es_ES
dc.description.references Czarnecki, L. S. (1994). Misinterpretations of some power properties of electric circuits. IEEE Transactions on Power Delivery, 9(4), 1760-1769. doi:10.1109/61.329509 es_ES
dc.description.references Willems, J. L. (2004). Reflections on Apparent Power and Power Factor in Nonsinusoidal and Polyphase Situations. IEEE Transactions on Power Delivery, 19(2), 835-840. doi:10.1109/tpwrd.2003.823182 es_ES
dc.description.references Emanuel, A. E. (1999). Apparent power definitions for three-phase systems. IEEE Transactions on Power Delivery, 14(3), 767-772. doi:10.1109/61.772313 es_ES
dc.description.references Jayatunga, U., Ciufo, P., Perera, S., & Agalgaonkar, A. P. (2015). Deterministic methodologies for the quantification of voltage unbalance propagation in radial and interconnected networks. IET Generation, Transmission & Distribution, 9(11), 1069-1076. doi:10.1049/iet-gtd.2014.0661 es_ES
dc.description.references Von Jouanne, A., & Banerjee, B. (2001). Assessment of voltage unbalance. IEEE Transactions on Power Delivery, 16(4), 782-790. doi:10.1109/61.956770 es_ES
dc.description.references Viswanadha Raju, G. K., & Bijwe, P. R. (2008). Efficient reconfiguration of balanced and unbalanced distribution systems for loss minimisation. IET Generation, Transmission & Distribution, 2(1), 7. doi:10.1049/iet-gtd:20070216 es_ES
dc.description.references Kersting, W. H. (2001). Causes and effects of unbalanced voltages serving an induction motor. IEEE Transactions on Industry Applications, 37(1), 165-170. doi:10.1109/28.903142 es_ES
dc.description.references Pillay, P., & Manyage, M. (2006). Loss of Life in Induction Machines Operating With Unbalanced Supplies. IEEE Transactions on Energy Conversion, 21(4), 813-822. doi:10.1109/tec.2005.853724 es_ES
dc.description.references Emanuel, A. E. (1998). The Buchholz-Goodhue apparent power definition: the practical approach for nonsinusoidal and unbalanced systems. IEEE Transactions on Power Delivery, 13(2), 344-350. doi:10.1109/61.660900 es_ES
dc.description.references Leon-Martinez, V., Montanana-Romeu, J., & Palazon-Garcia, J. M. (2011). Unbalance Compensator for Three-Phase Industrial Installations. IEEE Latin America Transactions, 9(5), 808-814. doi:10.1109/tla.2011.6030993 es_ES
dc.description.references Reginatto, R., & Ramos, R. A. (2014). On electrical power evaluation in dq coordinates under sinusoidal unbalanced conditions. IET Generation, Transmission & Distribution, 8(5), 976-982. doi:10.1049/iet-gtd.2013.0532 es_ES
dc.description.references Diez, J. M., Blasco, P. A., & Montoya, R. (2016). Formulation of phasor unbalance power: application to sinusoidal power systems. IET Generation, Transmission & Distribution, 10(16), 4178-4186. doi:10.1049/iet-gtd.2016.0730 es_ES
dc.description.references Marzband, M., Moghaddam, M. M., Akorede, M. F., & Khomeyrani, G. (2016). Adaptive load shedding scheme for frequency stability enhancement in microgrids. Electric Power Systems Research, 140, 78-86. doi:10.1016/j.epsr.2016.06.037 es_ES


This item appears in the following Collection(s)

Show simple item record