- -

Further results on generalized centro-invertible matrices

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Further results on generalized centro-invertible matrices

Show full item record

Lebtahi Ep-Kadi-Hahifi, L.; Romero Martínez, JO.; Thome, N. (2018). Further results on generalized centro-invertible matrices. Numerical Algorithms. 80(4):1309-1328. https://doi.org/10.1007/s11075-018-0528-9

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/119992

Files in this item

Item Metadata

Title: Further results on generalized centro-invertible matrices
Author:
UPV Unit: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions
Issued date:
Abstract:
[EN] This paper deals with generalized centro-invertible matrices introduced by the authors in Lebtahi et al. (Appl. Math. Lett. 38, 106¿109, 2014). As a first result, we state the coordinability between the classes of ...[+]
Subjects: Centrosymmetric matrices , Centro-invertible matrices , Spectral analysis , Inverse problem , Matrix sign function
Copyrigths: Reserva de todos los derechos
Source:
Numerical Algorithms. (issn: 1017-1398 )
DOI: 10.1007/s11075-018-0528-9
Publisher:
Springer-Verlag
Publisher version: https://doi.org/10.1007/s11075-018-0528-9
Thanks:
This paper was partially supported by Ministerio de Economia y Competitividad of Spain (Grant number DGI MTM2013-43678-P and Grant Red de Excelencia MTM2017-90682-REDT).
Type: Artículo

References

Abu-Jeib, I.: Centrosymmetric matrices: properties and an alternative approach. Can. Appl. Math. Q. 10(4), 429–445 (2002)

Bai, Z.: The inverse eigenproblem of centrosymmetric matrices with a submatrix constraint and its approximation. SIAM J. Matrix Anal. Appl. 26(4), 1100–1114 (2005)

Ben-Israel, A., Greville, T.: Generalized inverses: theory and applications, Wiley, 2nd edn. (2003) [+]
Abu-Jeib, I.: Centrosymmetric matrices: properties and an alternative approach. Can. Appl. Math. Q. 10(4), 429–445 (2002)

Bai, Z.: The inverse eigenproblem of centrosymmetric matrices with a submatrix constraint and its approximation. SIAM J. Matrix Anal. Appl. 26(4), 1100–1114 (2005)

Ben-Israel, A., Greville, T.: Generalized inverses: theory and applications, Wiley, 2nd edn. (2003)

Cantoni, A., Butler, P.: Eigenvalues and eigenvectors of symmetric centrosymmetrlc matrices. Linear Algebra Appl. 13, 275–288 (1976)

El-Mikkawy, M., Atlan, F.: On solving centrosymmetric linear systems. Appl. Math. 4, 21–32 (2013)

Gaudreau, P., Safouhi, H.: Centrosymmetric matrices in the sinc collocation method for Sturm-Liouville problems. EPJ Web of Conferences 108(0), 2016 (1004). https://doi.org/10.1051/epjconf/201610801004

Higham, N.: Function of matrices: theory and computation. SIAM (2008)

Lebtahi, L., Romero, O., Thome, N.: Characterizations of {K,s + 1}-potent matrices and applications. Linear Algebra Appl. 436, 293–306 (2012)

Lebtahi, L., Romero, O., Thome, N.: Relations between {K,s + 1}-potent matrices and different classes of complex matrices. Linear Algebra Appl. 438, 1517–1531 (2013)

Lebtahi, L., Romero, O., Thome, N.: Algorithms for {K,s + 1}-potent matrix constructions. J. Comput. Appl. Math. 249, 157–162 (2013)

Lebtahi, L., Romero, O., Thome, N.: Generalized centro-invertible matrices with applications. Appl. Math. Lett. 38, 106–109 (2014)

Lee, A.: Centrohermitian and skew-centrohermitian matrices. Linear Algebra Appl. 29, 205–210 (1980)

Stuart, J., Weaver, J.: Matrices that commute with a permutation. Linear Algebra Appl. 150, 255–265 (1991)

Weaver, J.: Centrosymmetric (cross-symmetric) matrices, their basic properties, eigenvalues, and eigenvectors. Am. Math. Mon. 92, 711–717 (1985)

Wikramaratna, R.S.: The centro-invertible matrix: a new type of matrix arising in pseudo-randon number generation. Linear Algebra Appl. 434(1), 144–151 (2011)

Wikramaratna, R.S.: The additive congruential random number generator—a special case of a multiple recursive generator. J. Comput. Appl. Math. 216(2), 371–387 (2008)

Yasuda, M.: Some properties of commuting and anti-commuting m-involutions. Acta Math. Sci. 32(2), 631–644 (2012)

Zhongyun, L.: Some properties of centrosymmetric matrices and its applications. Numer. Math. 14, 2 (2005)

[-]

This item appears in the following Collection(s)

Show full item record