- -

Monitoring E-commerce Adoption from Online Data

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Monitoring E-commerce Adoption from Online Data

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Blazquez, Desamparados es_ES
dc.contributor.author Domenech, Josep es_ES
dc.contributor.author Gil, José A. es_ES
dc.contributor.author Pont Sanjuan, Ana es_ES
dc.date.accessioned 2019-05-08T20:32:16Z
dc.date.available 2019-05-08T20:32:16Z
dc.date.issued 2018 es_ES
dc.identifier.issn 0219-1377 es_ES
dc.identifier.uri http://hdl.handle.net/10251/120149
dc.description.abstract [EN] The purpose of this paper is to propose an intelligent system to automatically monitor the firms¿ engagement in e-commerce by analyzing online data retrieved from their corporate websites. The design of the proposed system combines web content mining and scraping techniques with learning methods for Big Data. Corporate websites are scraped to extract more than 150 features related to the e-commerce adoption, such as the presence of some keywords or a private area. Then, these features are taken as input by a classification model that includes dimensionality reduction techniques. The system is evaluated with a data set consisting of 426 corporate websites of firms based in France and Spain. The system successfully classified most of the firms into those that adopted e-commerce and those that did not, reaching a classification accuracy of 90.6%. This demonstrates the feasibility of monitoring e-commerce adoption from online data. Moreover, the proposed system represents a cost-effective alternative to surveys as method for collecting e-commerce information from companies, and is capable of providing more frequent information than surveys and avoids the non-response errors. This is the first research work to design and evaluate an intelligent system to automatically detect e-commerce engagement from online data. This proposal opens up the opportunity to monitor e-commerce adoption at a large scale, with highly granular information that otherwise would require every firm to complete a survey. In addition, it makes it possible to track the evolution of this activity in real time, so that governments and institutions could make informed decisions earlier. es_ES
dc.description.sponsorship This work has been partially supported by the Spanish Ministry of Economy and Competitiveness with Grant TIN2013-43913-R, and by the Spanish Ministry of Education with Grant FPU14/02386.
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Knowledge and Information Systems es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject.classification ECONOMIA APLICADA es_ES
dc.subject.classification ARQUITECTURA Y TECNOLOGIA DE COMPUTADORES es_ES
dc.title Monitoring E-commerce Adoption from Online Data es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s10115-018-1233-7 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//TIN2009-08201/ES/Acceso Inteligente A Los Contenidos Para Mejorar Las Prestaciones De La Web/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MECD//FPU2014-02386/ES/FPU2014-02386/ es_ES
dc.rights.accessRights Abierto es_ES
dc.date.embargoEndDate 2019-06-28 es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Economía y Ciencias Sociales - Departament d'Economia i Ciències Socials es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors es_ES
dc.description.bibliographicCitation Blazquez, D.; Domenech, J.; Gil, JA.; Pont Sanjuan, A. (2018). Monitoring E-commerce Adoption from Online Data. Knowledge and Information Systems. 1-19. https://doi.org/10.1007/s10115-018-1233-7 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.org/10.1007/s10115-018-1233-7 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 19 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.relation.pasarela S\364646 es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.description.references Arias M, Arratia A, Xuriguera R (2013) Forecasting with Twitter data. ACM Trans Intell Syst Technol 5:1–24. https://doi.org/10.1145/2542182.2542190 es_ES
dc.description.references Arora SK, Youtie J, Shapira P, Gao L, Ma T (2013) Entry strategies in an emerging technology: a pilot web-based study of graphene firms. Scientometrics 95:1189–1207. https://doi.org/10.1007/s11192-013-0950-7 es_ES
dc.description.references Barcaroli G, Nurra A, Scarnò M, Summa D (2014) Use of web scraping and text mining techniques in the istat survey on information and communication technology in enterprises. In: Proceedings of quality conference, pp 33–38 es_ES
dc.description.references Barcaroli G, Nurra A, Salamone S, Scannapieco M, Scarnò M, Summa D (2015) Internet as data source in the istat survey on ict in enterprises. Austrian J Stat 44:31. https://doi.org/10.17713/ajs.v44i2.53 es_ES
dc.description.references Blazquez D, Domenech J (2014) Inferring export orientation from corporate websites. Appl Econ Lett 21:509–512. https://doi.org/10.1080/13504851.2013.872752 es_ES
dc.description.references Blazquez D, Domenech J (2017) Big data sources and methods for social and economic analyses. Technol Forecast Soc Change. https://doi.org/10.1016/j.techfore.2017.07.027 es_ES
dc.description.references Blazquez D, Domenech J (2017) Web data mining for monitoring business export orientation. Technol Econ Dev Econ. https://doi.org/10.3846/20294913.2016.1213193 es_ES
dc.description.references Bollen J, Mao H, Zeng X (2011) Twitter mood predicts the stock market. J Comput Sci 2:1–8. https://doi.org/10.1016/j.jocs.2010.12.007 es_ES
dc.description.references Bughin J (2015) Google searches and twitter mood: nowcasting telecom sales performance. NETNOMICS: Econ Res Electron Netw 16:87–105. https://doi.org/10.1007/s11066-015-9096-5 es_ES
dc.description.references Bulligan G, Marcellino M, Venditti F (2015) Forecasting economic activity with targeted predictors. Int J Forecast 31:188–206. https://doi.org/10.1016/j.ijforecast.2014.03.004 es_ES
dc.description.references Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP (2002) Smote: synthetic minority over-sampling technique. J Artif Intell Res 16:321–357 es_ES
dc.description.references Choi H, Varian H (2009) Predicting the present with Google Trends. http://static.googleusercontent.com/external_content/untrusted_dlcp/www.google.com/en//googleblogs/pdfs/google_predicting_the_present.pdf . Accessed 9 Dec 2016 es_ES
dc.description.references Choi H, Varian H (2012) Predicting the present with Google Trends. Econ Record 88:2–9. https://doi.org/10.1111/j.1475-4932.2012.00809.x es_ES
dc.description.references Cooley R, Mobasher B, Srivastava J (1997) Web mining: information and pattern discovery on the world wide web. In: Proceedings of the ninth ieee international conference on tools with artificial intelligence. IEEE Computer Society, Newport Beach, CA, USA, pp 558–567. https://doi.org/10.1109/TAI.1997.632303 es_ES
dc.description.references Domenech J, de la Ossa B, Pont A, Gil JA, Martinez M, Rubio A (2012) An intelligent system for retrieving economic information from corporate websites. In: IEEE/WIC/ACM international joint conferences on web intelligence (WI) and intelligent agent technologies (IAT), Macau, China, pp 573–578. https://doi.org/10.1109/WI-IAT.2012.92 es_ES
dc.description.references Ecommerce Foundation (2016) Global B2C E-commerce Report 2016 es_ES
dc.description.references Edelman B (2012) Using internet data for economic research. J Econ Perspect 26:189–206. https://doi.org/10.1257/jep.26.2.189 es_ES
dc.description.references Einav L, Levin J (2014) The data revolution and economic analysis. Innov Policy Econ 14:1–24. https://doi.org/10.1086/674019 es_ES
dc.description.references Eurostat (2008) NACE Rev. 2 Statistical classification of economic activities in the European Communities. EUROSTAT Methodologies and Working papers, Office for Official Publications of the European Communities, Luxembourg es_ES
dc.description.references Eurostat (2016) ICT usage and e-commerce in enterprises. http://ec.europa.eu/eurostat/statistics-explained/index.php/E-commerce_statistics . Accessed 12 Dec 2016 es_ES
dc.description.references Fan J, Han F, Liu H (2014) Challenges of Big Data analysis. Natl Sci Rev 1:293–314. https://doi.org/10.1093/nsr/nwt032 es_ES
dc.description.references Fondeur Y, Karamé F (2013) Can Google data help predict French youth unemployment? Econ Model 30:117–125. https://doi.org/10.1016/j.econmod.2012.07.017 es_ES
dc.description.references Griffis SE, Goldsby TJ, Cooper M (2003) Web-based and mail surveys: A comparison of response, data, and cost. J Bus Logist 24:237–258. https://doi.org/10.1002/j.2158-1592.2003.tb00053.x es_ES
dc.description.references Hand C, Judge G (2012) Searching for the picture: forecasting UK cinema admissions using google trends data. Appl Econ Lett 19:1051–1055. https://doi.org/10.1080/13504851.2011.613744 es_ES
dc.description.references Hao W, Walden J, Trenkamp C (2013) Accelerating e-commerce sites in the cloud. 10th Anual Consumer Communications and Networking Conference (CCNC). IEEE, IEEE, pp 605–608 es_ES
dc.description.references Hasan B (2016) Perceived irritation in online shopping: the impact of website design characteristics. Comput Hum Behav 54:224–230. https://doi.org/10.1016/j.chb.2015.07.056 es_ES
dc.description.references Hastie T, Tibshirani R, Friedman J (2009) The elements of statistical learning: data mining, inference and prediction, 2nd edn. Springer, Berlin es_ES
dc.description.references Hastie T, Tibshirani R, Friedman J (2013) The elements of statistical learning: data mining, inference and prediction, 3rd edn. Springer, Berlin es_ES
dc.description.references He LJ (2012) The application of web mining ontology system in e-commerce based on FCA, vol 149. Springer, Berlin, pp 429–432. https://doi.org/10.1007/978-3-642-28658-2_65 es_ES
dc.description.references Hernández B, Jiménez J, Martín MJ (2009) Key website factors in e-business strategy. Int J Inf Manag 29:362–371. https://doi.org/10.1016/j.ijinfomgt.2008.12.006 es_ES
dc.description.references INE (2016) Encuesta de uso de TIC y Comercio Electrónico en las empresas 2015-2016. http://ine.es/dynt3/inebase/?path=/t09/e02/a2015-2016 , http://ine.es/dynt3/inebase/?path=/t09/e02/a2015-2016 . Accessed 9 Oct 2016 es_ES
dc.description.references James G, Witten D, Hastie T, Tibshirani R (2013) An introduction to statistical learning, vol 112. Springer Texts in Statistics. Springer, New York es_ES
dc.description.references Jungherr A, Jürgens P (2013) Forecasting the pulse. Internet Res 23:589–607. https://doi.org/10.1108/IntR-06-2012-0115 es_ES
dc.description.references Kim T, Hong J, Kang P (2015) Box office forecasting using machine learning algorithms based on SNS data. Int J Forecast 31:364–390. https://doi.org/10.1016/j.ijforecast.2014.05.006 es_ES
dc.description.references Kosala R, Blockeel H (2000) Web mining research. ACM SIGKDD Explor Newsl 2:1–15. https://doi.org/10.1145/360402.360406 es_ES
dc.description.references Kuhn M, Johnson K (2013) Applied predictive modeling, vol 810. Springer, Berlin es_ES
dc.description.references Kulkarni G, Kannan P, Moe W (2012) Using online search data to forecast new product sales. Decision Support Syst 52:604–611. https://doi.org/10.1016/j.dss.2011.10.017 es_ES
dc.description.references Lee Y, Kozar KA (2006) Investigating the effect of website quality on e-business success: an analytic hierarchy process (ahp) approach. Decision Support Syst 42:1383–1401. https://doi.org/10.1016/j.dss.2005.11.005 es_ES
dc.description.references Li Y, Arora S, Youtie J, Shapira P (2016) Using web mining to explore Triple Helix influences on growth in small and mid-size firms. Technovation. https://doi.org/10.1016/j.technovation.2016.01.002 es_ES
dc.description.references Menardi G, Torelli N (2014) Training and assessing classification rules with imbalanced data. Data Min Knowl Discov 28:92–122. https://doi.org/10.1007/s10618-012-0295-5 es_ES
dc.description.references Munzert S, Rubba C, Meißner P, Nyhuis D (2015) Automated data collection with R: a practical guide to web scraping and text mining. Wiley, Chichester es_ES
dc.description.references Oliveira T, Martins MF (2010) Understanding e-business adoption across industries in European countries. Ind Manag Data Syst 110:1337–1354. https://doi.org/10.1108/02635571011087428 es_ES
dc.description.references ONS (2016) E-commerce and ICT Activity: 2015. https://www.ons.gov.uk/businessindustryandtrade/itandinternetindustry/bulletins/ecommerceandictactivity/2015 . Accessed 5 Dec 2016 es_ES
dc.description.references Ordanini A, Rubera G (2010) How does the application of an it service innovation affect firm performance? A theoretical framework and empirical analysis on e-commerce. Inf Manag 47:60–67. https://doi.org/10.1016/j.im.2009.10.003 es_ES
dc.description.references Peytchev A (2013) Consequences of survey nonresponse. Ann Am Acad Political Soc Sci 645:88–111. https://doi.org/10.1177/0002716212461748 es_ES
dc.description.references Poggi N, Carrera D, Gavaldà R, Ayguadé E, Torres J (2014) A methodology for the evaluation of high response time on e-commerce users and sales. Inf Syst Front 16:867–885. https://doi.org/10.1007/s10796-012-9387-4 es_ES
dc.description.references Pokorný J, Škoda P, Zelinka I, Bednárek D, Zavoral F, Kruliš M, Šaloun P (2015) Big Data movement: a challenge in data processing, Studies in Big Data, vol 9. Springer, Cham. https://doi.org/10.1007/978-3-319-11056-1_2 es_ES
dc.description.references R Core Team (2015) R: a language and environment for statistical computing, Vienna, Austria. https://www.R-project.org/ . Accessed 25 Mar 2015 es_ES
dc.description.references Roche X (2014) HTTrack. http://www.httrack.com . Accessed 10 Nov 2014 es_ES
dc.description.references Rodríguez-Ardura I, Meseguer-Artola A (2010) Toward a longitudinal model of e-commerce: environmental, technological, and organizational drivers of B2C adoption. Inf Soc 26:209–227. https://doi.org/10.1080/01972241003712264 es_ES
dc.description.references Rosaci D, Sarnè G (2014) Multi-agent technology and ontologies to support personalization in B2C e-commerce. Electron Commer Res Appl 13:13–23. https://doi.org/10.1016/j.elerap.2013.07.003 es_ES
dc.description.references Shih HY (2012) The dynamics of local and interactive effects on innovation adoption: the case of electronic commerce. J Eng Technol Manag 29:434–452. https://doi.org/10.1016/j.jengtecman.2012.06.001 es_ES
dc.description.references Sohrabi B, Mahmoudian P, Raeesi I (2012) A framework for improving e-commerce websites usability using a hybrid genetic algorithm and neural network system. Neural Comput Appl 21:1017–1029. https://doi.org/10.1007/s00521-011-0674-7 es_ES
dc.description.references Stoll KU, Hepp M (2013) Detection of e-commerce systems with sparse features and supervised classification. In: 10th international conference on e-business engineering (ICEBE), IEEE, Coventry, United Kingdom, pp 199–206. https://doi.org/10.1109/ICEBE.2013.30 es_ES
dc.description.references Suchacka G, Borzemski L (2013) Simulation-based performance study of e-commerce Web server system-results for FIFO scheduling. Springer, Berlin, pp 249–259 es_ES
dc.description.references Swets J (1988) Measuring the accuracy of diagnostic systems. Science 240:1285–1293. https://doi.org/10.1126/science.3287615 es_ES
dc.description.references Thorleuchter D, Van den Poel D (2012) Predicting e-commerce company success by mining the text of its publicly-accessible website. Expert Syst Appl 39:13,026–13,034. https://doi.org/10.1016/j.eswa.2012.05.096 es_ES
dc.description.references Tibshirani R (1996) Regression shrinkage and selection via the Lasso. J R Stat Soc Ser B (Methodol) 58:267–288 es_ES
dc.description.references Varian HR (2014) Big Data: new tricks for econometrics. J Econ Perspect 28:3–28. https://doi.org/10.1257/jep.28.2.3 es_ES
dc.description.references Vicente MR, López-Menéndez AJ, Pérez R (2015) Forecasting unemployment with internet search data: does it help to improve predictions when job destruction is skyrocketing? Technol Forecast Soc Change 92:132–139. https://doi.org/10.1016/j.techfore.2014.12.005 es_ES
dc.description.references Youtie J, Hicks D, Shapira P, Horsley T (2012) Pathways from discovery to commercialisation: using web sources to track small and medium-sized enterprise strategies in emerging nanotechnologies. Technol Anal Strateg Manag 24:981–995. https://doi.org/10.1080/09537325.2012.724163 es_ES
dc.description.references Zhang Y, Fang Y, Wei KK, Ramsey E, McCole P, Chen H (2011) Repurchase intention in B2C e-commerce—a relationship quality perspective. Inf Manag 48:192–200. https://doi.org/10.1016/j.im.2011.05.003 es_ES
dc.description.references Zhao WX, Li S, He Y, Wang L, Wen JR, Li X (2016) Exploring demographic information in social media for product recommendation. Knowl Inf Syst 49:61–89 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem