Mostrar el registro sencillo del ítem
dc.contributor.author | Blazquez, Desamparados | es_ES |
dc.contributor.author | Domenech, Josep | es_ES |
dc.contributor.author | Gil, José A. | es_ES |
dc.contributor.author | Pont Sanjuan, Ana | es_ES |
dc.date.accessioned | 2019-05-08T20:32:16Z | |
dc.date.available | 2019-05-08T20:32:16Z | |
dc.date.issued | 2018 | es_ES |
dc.identifier.issn | 0219-1377 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/120149 | |
dc.description.abstract | [EN] The purpose of this paper is to propose an intelligent system to automatically monitor the firms¿ engagement in e-commerce by analyzing online data retrieved from their corporate websites. The design of the proposed system combines web content mining and scraping techniques with learning methods for Big Data. Corporate websites are scraped to extract more than 150 features related to the e-commerce adoption, such as the presence of some keywords or a private area. Then, these features are taken as input by a classification model that includes dimensionality reduction techniques. The system is evaluated with a data set consisting of 426 corporate websites of firms based in France and Spain. The system successfully classified most of the firms into those that adopted e-commerce and those that did not, reaching a classification accuracy of 90.6%. This demonstrates the feasibility of monitoring e-commerce adoption from online data. Moreover, the proposed system represents a cost-effective alternative to surveys as method for collecting e-commerce information from companies, and is capable of providing more frequent information than surveys and avoids the non-response errors. This is the first research work to design and evaluate an intelligent system to automatically detect e-commerce engagement from online data. This proposal opens up the opportunity to monitor e-commerce adoption at a large scale, with highly granular information that otherwise would require every firm to complete a survey. In addition, it makes it possible to track the evolution of this activity in real time, so that governments and institutions could make informed decisions earlier. | es_ES |
dc.description.sponsorship | This work has been partially supported by the Spanish Ministry of Economy and Competitiveness with Grant TIN2013-43913-R, and by the Spanish Ministry of Education with Grant FPU14/02386. | |
dc.language | Inglés | es_ES |
dc.publisher | Springer-Verlag | es_ES |
dc.relation.ispartof | Knowledge and Information Systems | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject.classification | ECONOMIA APLICADA | es_ES |
dc.subject.classification | ARQUITECTURA Y TECNOLOGIA DE COMPUTADORES | es_ES |
dc.title | Monitoring E-commerce Adoption from Online Data | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s10115-018-1233-7 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//TIN2009-08201/ES/Acceso Inteligente A Los Contenidos Para Mejorar Las Prestaciones De La Web/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MECD//FPU2014-02386/ES/FPU2014-02386/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.date.embargoEndDate | 2019-06-28 | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Economía y Ciencias Sociales - Departament d'Economia i Ciències Socials | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors | es_ES |
dc.description.bibliographicCitation | Blazquez, D.; Domenech, J.; Gil, JA.; Pont Sanjuan, A. (2018). Monitoring E-commerce Adoption from Online Data. Knowledge and Information Systems. 1-19. https://doi.org/10.1007/s10115-018-1233-7 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://doi.org/10.1007/s10115-018-1233-7 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 19 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.relation.pasarela | S\364646 | es_ES |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.description.references | Arias M, Arratia A, Xuriguera R (2013) Forecasting with Twitter data. ACM Trans Intell Syst Technol 5:1–24. https://doi.org/10.1145/2542182.2542190 | es_ES |
dc.description.references | Arora SK, Youtie J, Shapira P, Gao L, Ma T (2013) Entry strategies in an emerging technology: a pilot web-based study of graphene firms. Scientometrics 95:1189–1207. https://doi.org/10.1007/s11192-013-0950-7 | es_ES |
dc.description.references | Barcaroli G, Nurra A, Scarnò M, Summa D (2014) Use of web scraping and text mining techniques in the istat survey on information and communication technology in enterprises. In: Proceedings of quality conference, pp 33–38 | es_ES |
dc.description.references | Barcaroli G, Nurra A, Salamone S, Scannapieco M, Scarnò M, Summa D (2015) Internet as data source in the istat survey on ict in enterprises. Austrian J Stat 44:31. https://doi.org/10.17713/ajs.v44i2.53 | es_ES |
dc.description.references | Blazquez D, Domenech J (2014) Inferring export orientation from corporate websites. Appl Econ Lett 21:509–512. https://doi.org/10.1080/13504851.2013.872752 | es_ES |
dc.description.references | Blazquez D, Domenech J (2017) Big data sources and methods for social and economic analyses. Technol Forecast Soc Change. https://doi.org/10.1016/j.techfore.2017.07.027 | es_ES |
dc.description.references | Blazquez D, Domenech J (2017) Web data mining for monitoring business export orientation. Technol Econ Dev Econ. https://doi.org/10.3846/20294913.2016.1213193 | es_ES |
dc.description.references | Bollen J, Mao H, Zeng X (2011) Twitter mood predicts the stock market. J Comput Sci 2:1–8. https://doi.org/10.1016/j.jocs.2010.12.007 | es_ES |
dc.description.references | Bughin J (2015) Google searches and twitter mood: nowcasting telecom sales performance. NETNOMICS: Econ Res Electron Netw 16:87–105. https://doi.org/10.1007/s11066-015-9096-5 | es_ES |
dc.description.references | Bulligan G, Marcellino M, Venditti F (2015) Forecasting economic activity with targeted predictors. Int J Forecast 31:188–206. https://doi.org/10.1016/j.ijforecast.2014.03.004 | es_ES |
dc.description.references | Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP (2002) Smote: synthetic minority over-sampling technique. J Artif Intell Res 16:321–357 | es_ES |
dc.description.references | Choi H, Varian H (2009) Predicting the present with Google Trends. http://static.googleusercontent.com/external_content/untrusted_dlcp/www.google.com/en//googleblogs/pdfs/google_predicting_the_present.pdf . Accessed 9 Dec 2016 | es_ES |
dc.description.references | Choi H, Varian H (2012) Predicting the present with Google Trends. Econ Record 88:2–9. https://doi.org/10.1111/j.1475-4932.2012.00809.x | es_ES |
dc.description.references | Cooley R, Mobasher B, Srivastava J (1997) Web mining: information and pattern discovery on the world wide web. In: Proceedings of the ninth ieee international conference on tools with artificial intelligence. IEEE Computer Society, Newport Beach, CA, USA, pp 558–567. https://doi.org/10.1109/TAI.1997.632303 | es_ES |
dc.description.references | Domenech J, de la Ossa B, Pont A, Gil JA, Martinez M, Rubio A (2012) An intelligent system for retrieving economic information from corporate websites. In: IEEE/WIC/ACM international joint conferences on web intelligence (WI) and intelligent agent technologies (IAT), Macau, China, pp 573–578. https://doi.org/10.1109/WI-IAT.2012.92 | es_ES |
dc.description.references | Ecommerce Foundation (2016) Global B2C E-commerce Report 2016 | es_ES |
dc.description.references | Edelman B (2012) Using internet data for economic research. J Econ Perspect 26:189–206. https://doi.org/10.1257/jep.26.2.189 | es_ES |
dc.description.references | Einav L, Levin J (2014) The data revolution and economic analysis. Innov Policy Econ 14:1–24. https://doi.org/10.1086/674019 | es_ES |
dc.description.references | Eurostat (2008) NACE Rev. 2 Statistical classification of economic activities in the European Communities. EUROSTAT Methodologies and Working papers, Office for Official Publications of the European Communities, Luxembourg | es_ES |
dc.description.references | Eurostat (2016) ICT usage and e-commerce in enterprises. http://ec.europa.eu/eurostat/statistics-explained/index.php/E-commerce_statistics . Accessed 12 Dec 2016 | es_ES |
dc.description.references | Fan J, Han F, Liu H (2014) Challenges of Big Data analysis. Natl Sci Rev 1:293–314. https://doi.org/10.1093/nsr/nwt032 | es_ES |
dc.description.references | Fondeur Y, Karamé F (2013) Can Google data help predict French youth unemployment? Econ Model 30:117–125. https://doi.org/10.1016/j.econmod.2012.07.017 | es_ES |
dc.description.references | Griffis SE, Goldsby TJ, Cooper M (2003) Web-based and mail surveys: A comparison of response, data, and cost. J Bus Logist 24:237–258. https://doi.org/10.1002/j.2158-1592.2003.tb00053.x | es_ES |
dc.description.references | Hand C, Judge G (2012) Searching for the picture: forecasting UK cinema admissions using google trends data. Appl Econ Lett 19:1051–1055. https://doi.org/10.1080/13504851.2011.613744 | es_ES |
dc.description.references | Hao W, Walden J, Trenkamp C (2013) Accelerating e-commerce sites in the cloud. 10th Anual Consumer Communications and Networking Conference (CCNC). IEEE, IEEE, pp 605–608 | es_ES |
dc.description.references | Hasan B (2016) Perceived irritation in online shopping: the impact of website design characteristics. Comput Hum Behav 54:224–230. https://doi.org/10.1016/j.chb.2015.07.056 | es_ES |
dc.description.references | Hastie T, Tibshirani R, Friedman J (2009) The elements of statistical learning: data mining, inference and prediction, 2nd edn. Springer, Berlin | es_ES |
dc.description.references | Hastie T, Tibshirani R, Friedman J (2013) The elements of statistical learning: data mining, inference and prediction, 3rd edn. Springer, Berlin | es_ES |
dc.description.references | He LJ (2012) The application of web mining ontology system in e-commerce based on FCA, vol 149. Springer, Berlin, pp 429–432. https://doi.org/10.1007/978-3-642-28658-2_65 | es_ES |
dc.description.references | Hernández B, Jiménez J, Martín MJ (2009) Key website factors in e-business strategy. Int J Inf Manag 29:362–371. https://doi.org/10.1016/j.ijinfomgt.2008.12.006 | es_ES |
dc.description.references | INE (2016) Encuesta de uso de TIC y Comercio Electrónico en las empresas 2015-2016. http://ine.es/dynt3/inebase/?path=/t09/e02/a2015-2016 , http://ine.es/dynt3/inebase/?path=/t09/e02/a2015-2016 . Accessed 9 Oct 2016 | es_ES |
dc.description.references | James G, Witten D, Hastie T, Tibshirani R (2013) An introduction to statistical learning, vol 112. Springer Texts in Statistics. Springer, New York | es_ES |
dc.description.references | Jungherr A, Jürgens P (2013) Forecasting the pulse. Internet Res 23:589–607. https://doi.org/10.1108/IntR-06-2012-0115 | es_ES |
dc.description.references | Kim T, Hong J, Kang P (2015) Box office forecasting using machine learning algorithms based on SNS data. Int J Forecast 31:364–390. https://doi.org/10.1016/j.ijforecast.2014.05.006 | es_ES |
dc.description.references | Kosala R, Blockeel H (2000) Web mining research. ACM SIGKDD Explor Newsl 2:1–15. https://doi.org/10.1145/360402.360406 | es_ES |
dc.description.references | Kuhn M, Johnson K (2013) Applied predictive modeling, vol 810. Springer, Berlin | es_ES |
dc.description.references | Kulkarni G, Kannan P, Moe W (2012) Using online search data to forecast new product sales. Decision Support Syst 52:604–611. https://doi.org/10.1016/j.dss.2011.10.017 | es_ES |
dc.description.references | Lee Y, Kozar KA (2006) Investigating the effect of website quality on e-business success: an analytic hierarchy process (ahp) approach. Decision Support Syst 42:1383–1401. https://doi.org/10.1016/j.dss.2005.11.005 | es_ES |
dc.description.references | Li Y, Arora S, Youtie J, Shapira P (2016) Using web mining to explore Triple Helix influences on growth in small and mid-size firms. Technovation. https://doi.org/10.1016/j.technovation.2016.01.002 | es_ES |
dc.description.references | Menardi G, Torelli N (2014) Training and assessing classification rules with imbalanced data. Data Min Knowl Discov 28:92–122. https://doi.org/10.1007/s10618-012-0295-5 | es_ES |
dc.description.references | Munzert S, Rubba C, Meißner P, Nyhuis D (2015) Automated data collection with R: a practical guide to web scraping and text mining. Wiley, Chichester | es_ES |
dc.description.references | Oliveira T, Martins MF (2010) Understanding e-business adoption across industries in European countries. Ind Manag Data Syst 110:1337–1354. https://doi.org/10.1108/02635571011087428 | es_ES |
dc.description.references | ONS (2016) E-commerce and ICT Activity: 2015. https://www.ons.gov.uk/businessindustryandtrade/itandinternetindustry/bulletins/ecommerceandictactivity/2015 . Accessed 5 Dec 2016 | es_ES |
dc.description.references | Ordanini A, Rubera G (2010) How does the application of an it service innovation affect firm performance? A theoretical framework and empirical analysis on e-commerce. Inf Manag 47:60–67. https://doi.org/10.1016/j.im.2009.10.003 | es_ES |
dc.description.references | Peytchev A (2013) Consequences of survey nonresponse. Ann Am Acad Political Soc Sci 645:88–111. https://doi.org/10.1177/0002716212461748 | es_ES |
dc.description.references | Poggi N, Carrera D, Gavaldà R, Ayguadé E, Torres J (2014) A methodology for the evaluation of high response time on e-commerce users and sales. Inf Syst Front 16:867–885. https://doi.org/10.1007/s10796-012-9387-4 | es_ES |
dc.description.references | Pokorný J, Škoda P, Zelinka I, Bednárek D, Zavoral F, Kruliš M, Šaloun P (2015) Big Data movement: a challenge in data processing, Studies in Big Data, vol 9. Springer, Cham. https://doi.org/10.1007/978-3-319-11056-1_2 | es_ES |
dc.description.references | R Core Team (2015) R: a language and environment for statistical computing, Vienna, Austria. https://www.R-project.org/ . Accessed 25 Mar 2015 | es_ES |
dc.description.references | Roche X (2014) HTTrack. http://www.httrack.com . Accessed 10 Nov 2014 | es_ES |
dc.description.references | Rodríguez-Ardura I, Meseguer-Artola A (2010) Toward a longitudinal model of e-commerce: environmental, technological, and organizational drivers of B2C adoption. Inf Soc 26:209–227. https://doi.org/10.1080/01972241003712264 | es_ES |
dc.description.references | Rosaci D, Sarnè G (2014) Multi-agent technology and ontologies to support personalization in B2C e-commerce. Electron Commer Res Appl 13:13–23. https://doi.org/10.1016/j.elerap.2013.07.003 | es_ES |
dc.description.references | Shih HY (2012) The dynamics of local and interactive effects on innovation adoption: the case of electronic commerce. J Eng Technol Manag 29:434–452. https://doi.org/10.1016/j.jengtecman.2012.06.001 | es_ES |
dc.description.references | Sohrabi B, Mahmoudian P, Raeesi I (2012) A framework for improving e-commerce websites usability using a hybrid genetic algorithm and neural network system. Neural Comput Appl 21:1017–1029. https://doi.org/10.1007/s00521-011-0674-7 | es_ES |
dc.description.references | Stoll KU, Hepp M (2013) Detection of e-commerce systems with sparse features and supervised classification. In: 10th international conference on e-business engineering (ICEBE), IEEE, Coventry, United Kingdom, pp 199–206. https://doi.org/10.1109/ICEBE.2013.30 | es_ES |
dc.description.references | Suchacka G, Borzemski L (2013) Simulation-based performance study of e-commerce Web server system-results for FIFO scheduling. Springer, Berlin, pp 249–259 | es_ES |
dc.description.references | Swets J (1988) Measuring the accuracy of diagnostic systems. Science 240:1285–1293. https://doi.org/10.1126/science.3287615 | es_ES |
dc.description.references | Thorleuchter D, Van den Poel D (2012) Predicting e-commerce company success by mining the text of its publicly-accessible website. Expert Syst Appl 39:13,026–13,034. https://doi.org/10.1016/j.eswa.2012.05.096 | es_ES |
dc.description.references | Tibshirani R (1996) Regression shrinkage and selection via the Lasso. J R Stat Soc Ser B (Methodol) 58:267–288 | es_ES |
dc.description.references | Varian HR (2014) Big Data: new tricks for econometrics. J Econ Perspect 28:3–28. https://doi.org/10.1257/jep.28.2.3 | es_ES |
dc.description.references | Vicente MR, López-Menéndez AJ, Pérez R (2015) Forecasting unemployment with internet search data: does it help to improve predictions when job destruction is skyrocketing? Technol Forecast Soc Change 92:132–139. https://doi.org/10.1016/j.techfore.2014.12.005 | es_ES |
dc.description.references | Youtie J, Hicks D, Shapira P, Horsley T (2012) Pathways from discovery to commercialisation: using web sources to track small and medium-sized enterprise strategies in emerging nanotechnologies. Technol Anal Strateg Manag 24:981–995. https://doi.org/10.1080/09537325.2012.724163 | es_ES |
dc.description.references | Zhang Y, Fang Y, Wei KK, Ramsey E, McCole P, Chen H (2011) Repurchase intention in B2C e-commerce—a relationship quality perspective. Inf Manag 48:192–200. https://doi.org/10.1016/j.im.2011.05.003 | es_ES |
dc.description.references | Zhao WX, Li S, He Y, Wang L, Wen JR, Li X (2016) Exploring demographic information in social media for product recommendation. Knowl Inf Syst 49:61–89 | es_ES |