Mostrar el registro sencillo del ítem
dc.contributor.author | Bader, Philipp | es_ES |
dc.contributor.author | Kopylov, Nikita | es_ES |
dc.contributor.author | Blanes Zamora, Sergio | es_ES |
dc.date.accessioned | 2019-05-11T20:04:07Z | |
dc.date.available | 2019-05-11T20:04:07Z | |
dc.date.issued | 2018 | es_ES |
dc.identifier.issn | 0021-9606 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/120355 | |
dc.description.abstract | [EN] We consider the numerical integration of the Schrodinger equation with a time-dependent Hamiltonian given as the sum of the kinetic energy and a time-dependent potential. Commutator-free (CF) propagators are exponential propagators that have shown to be highly efficient for general time-dependent Hamiltonians. We propose new CF propagators that are tailored for Hamiltonians of the said structure, showing a considerably improved performance. We obtain new fourth-and sixth-order CF propagators as well as a novel sixth-order propagator that incorporates a double commutator that only depends on coordinates, so this term can be considered as cost-free. The algorithms require the computation of the action of exponentials on a vector similar to the well-known exponential midpoint propagator, and this is carried out using the Lanczos method. We illustrate the performance of the new methods on several numerical examples. Published by AIP Publishing. | es_ES |
dc.description.sponsorship | We wish to acknowledge Fernando Casas for his help in the construction of the methods Upsilon<INF>3</INF><SUP>[6]</SUP>. The authors acknowledge Ministerio de Economia y Competitividad (Spain) for financial support through Project No. MTM2016-77660-P (AEI/FEDER, UE). Additionally, Kopylov has been partly supported by Grant No. GRISOLIA/2015/A/137 from the Generalitat Valenciana. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | American Institute of Physics | es_ES |
dc.relation.ispartof | The Journal of Chemical Physics | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Exponential propagators for the Schrödinger equation with a time-dependent potential | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1063/1.5036838 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MTM2016-77660-P/ES/NUEVOS RETOS EN INTEGRACION NUMERICA: FUNDAMENTOS ALGEBRAICOS, METODOS DE ESCISION, METODOS DE MONTECARLO Y OTRAS APLICACIONES/ | |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//GRISOLIA%2F2015%2FA%2F137/ | |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Bader, P.; Kopylov, N.; Blanes Zamora, S. (2018). Exponential propagators for the Schrödinger equation with a time-dependent potential. The Journal of Chemical Physics. 149(24):1-7. https://doi.org/10.1063/1.5036838 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://doi.org/10.1063/1.5036838 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 7 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 149 | es_ES |
dc.description.issue | 24 | es_ES |
dc.identifier.pmid | 29960306 | |
dc.relation.pasarela | S\363735 | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | |
dc.contributor.funder | Generalitat Valenciana | |
dc.description.references | Bader, P., Iserles, A., Kropielnicka, K., & Singh, P. (2014). Effective Approximation for the Semiclassical Schrödinger Equation. Foundations of Computational Mathematics, 14(4), 689-720. doi:10.1007/s10208-013-9182-8 | es_ES |
dc.description.references | Bader, P., Iserles, A., Kropielnicka, K., & Singh, P. (2016). Efficient methods for linear Schrödinger equation in the semiclassical regime with time-dependent potential. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 472(2193), 20150733. doi:10.1098/rspa.2015.0733 | es_ES |
dc.description.references | Lubich, C. (2008). From Quantum to Classical Molecular Dynamics: Reduced Models and Numerical Analysis. doi:10.4171/067 | es_ES |
dc.description.references | Feit, M. ., Fleck, J. ., & Steiger, A. (1982). Solution of the Schrödinger equation by a spectral method. Journal of Computational Physics, 47(3), 412-433. doi:10.1016/0021-9991(82)90091-2 | es_ES |
dc.description.references | Tremblay, J. C., & Carrington, T. (2004). Using preconditioned adaptive step size Runge-Kutta methods for solving the time-dependent Schrödinger equation. The Journal of Chemical Physics, 121(23), 11535-11541. doi:10.1063/1.1814103 | es_ES |
dc.description.references | Sanz‐Serna, J. M., & Portillo, A. (1996). Classical numerical integrators for wave‐packet dynamics. The Journal of Chemical Physics, 104(6), 2349-2355. doi:10.1063/1.470930 | es_ES |
dc.description.references | Kormann, K., Holmgren, S., & Karlsson, H. O. (2008). Accurate time propagation for the Schrödinger equation with an explicitly time-dependent Hamiltonian. The Journal of Chemical Physics, 128(18), 184101. doi:10.1063/1.2916581 | es_ES |
dc.description.references | Peskin, U., Kosloff, R., & Moiseyev, N. (1994). The solution of the time dependent Schrödinger equation by the (t,t’) method: The use of global polynomial propagators for time dependent Hamiltonians. The Journal of Chemical Physics, 100(12), 8849-8855. doi:10.1063/1.466739 | es_ES |
dc.description.references | Castro, A., Marques, M. A. L., & Rubio, A. (2004). Propagators for the time-dependent Kohn–Sham equations. The Journal of Chemical Physics, 121(8), 3425-3433. doi:10.1063/1.1774980 | es_ES |
dc.description.references | Blanes, S., Casas, F., & Murua, A. (2017). Symplectic time-average propagators for the Schrödinger equation with a time-dependent Hamiltonian. The Journal of Chemical Physics, 146(11), 114109. doi:10.1063/1.4978410 | es_ES |
dc.description.references | Blanes, S., Casas, F., & Murua, A. (2015). An efficient algorithm based on splitting for the time integration of the Schrödinger equation. Journal of Computational Physics, 303, 396-412. doi:10.1016/j.jcp.2015.09.047 | es_ES |
dc.description.references | Gray, S. K., & Verosky, J. M. (1994). Classical Hamiltonian structures in wave packet dynamics. The Journal of Chemical Physics, 100(7), 5011-5022. doi:10.1063/1.467219 | es_ES |
dc.description.references | McLachlan, R. I., & Quispel, G. R. W. (2002). Splitting methods. Acta Numerica, 11, 341-434. doi:10.1017/s0962492902000053 | es_ES |
dc.description.references | Neuhauser, C., & Thalhammer, M. (2009). On the convergence of splitting methods for linear evolutionary Schrödinger equations involving an unbounded potential. BIT Numerical Mathematics, 49(1), 199-215. doi:10.1007/s10543-009-0215-2 | es_ES |
dc.description.references | Thalhammer, M. (2008). High-Order Exponential Operator Splitting Methods for Time-Dependent Schrödinger Equations. SIAM Journal on Numerical Analysis, 46(4), 2022-2038. doi:10.1137/060674636 | es_ES |
dc.description.references | Thalhammer, M. (2012). Convergence Analysis of High-Order Time-Splitting Pseudospectral Methods for Nonlinear Schrödinger Equations. SIAM Journal on Numerical Analysis, 50(6), 3231-3258. doi:10.1137/120866373 | es_ES |
dc.description.references | Gray, S. K., & Manolopoulos, D. E. (1996). Symplectic integrators tailored to the time‐dependent Schrödinger equation. The Journal of Chemical Physics, 104(18), 7099-7112. doi:10.1063/1.471428 | es_ES |
dc.description.references | Sanz-Serna, J. M., & Calvo, M. P. (1994). Numerical Hamiltonian Problems. doi:10.1007/978-1-4899-3093-4 | es_ES |
dc.description.references | Saad, Y. (1992). Analysis of Some Krylov Subspace Approximations to the Matrix Exponential Operator. SIAM Journal on Numerical Analysis, 29(1), 209-228. doi:10.1137/0729014 | es_ES |
dc.description.references | Park, T. J., & Light, J. C. (1986). Unitary quantum time evolution by iterative Lanczos reduction. The Journal of Chemical Physics, 85(10), 5870-5876. doi:10.1063/1.451548 | es_ES |
dc.description.references | Blanes, S., & Moan, P. C. (2000). Splitting methods for the time-dependent Schrödinger equation. Physics Letters A, 265(1-2), 35-42. doi:10.1016/s0375-9601(99)00866-x | es_ES |
dc.description.references | Magnus, W. (1954). On the exponential solution of differential equations for a linear operator. Communications on Pure and Applied Mathematics, 7(4), 649-673. doi:10.1002/cpa.3160070404 | es_ES |
dc.description.references | Blanes, S., Casas, F., Oteo, J. A., & Ros, J. (2009). The Magnus expansion and some of its applications. Physics Reports, 470(5-6), 151-238. doi:10.1016/j.physrep.2008.11.001 | es_ES |
dc.description.references | Blanes, S., & Moan, P. C. (2006). Fourth- and sixth-order commutator-free Magnus integrators for linear and non-linear dynamical systems. Applied Numerical Mathematics, 56(12), 1519-1537. doi:10.1016/j.apnum.2005.11.004 | es_ES |
dc.description.references | Thalhammer, M. (2006). A fourth-order commutator-free exponential integrator for nonautonomous differential equations. SIAM Journal on Numerical Analysis, 44(2), 851-864. doi:10.1137/05063042 | es_ES |
dc.description.references | Alvermann, A., & Fehske, H. (2011). High-order commutator-free exponential time-propagation of driven quantum systems. Journal of Computational Physics, 230(15), 5930-5956. doi:10.1016/j.jcp.2011.04.006 | es_ES |
dc.description.references | Auer, N., Einkemmer, L., Kandolf, P., & Ostermann, A. (2018). Magnus integrators on multicore CPUs and GPUs. Computer Physics Communications, 228, 115-122. doi:10.1016/j.cpc.2018.02.019 | es_ES |
dc.description.references | Munthe–Kaas, H., & Owren, B. (1999). Computations in a free Lie algebra. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 357(1754), 957-981. doi:10.1098/rsta.1999.0361 | es_ES |
dc.description.references | Bader, P., Blanes, S., Ponsoda, E., & Seydaoğlu, M. (2017). Symplectic integrators for the matrix Hill equation. Journal of Computational and Applied Mathematics, 316, 47-59. doi:10.1016/j.cam.2016.09.041 | es_ES |
dc.description.references | P.V. Koseleff, “Formal calculus for Lie methods in Hamiltonian mechanics,” Ph.D. thesis, Lawrence Berkeley Laboratory, 1994. | es_ES |
dc.description.references | Chin, S. A. (1997). Symplectic integrators from composite operator factorizations. Physics Letters A, 226(6), 344-348. doi:10.1016/s0375-9601(97)00003-0 | es_ES |
dc.description.references | Omelyan, I. P., Mryglod, I. M., & Folk, R. (2002). Construction of high-order force-gradient algorithms for integration of motion in classical and quantum systems. Physical Review E, 66(2). doi:10.1103/physreve.66.026701 | es_ES |
dc.description.references | Walker, R. B., & Preston, R. K. (1977). Quantum versus classical dynamics in the treatment of multiple photon excitation of the anharmonic oscillator. The Journal of Chemical Physics, 67(5), 2017. doi:10.1063/1.435085 | es_ES |
dc.description.references | Iserles, A., Kropielnicka, K., & Singh, P. (2018). Magnus--Lanczos Methods with Simplified Commutators for the Schrödinger Equation with a Time-Dependent Potential. SIAM Journal on Numerical Analysis, 56(3), 1547-1569. doi:10.1137/17m1149833 | es_ES |