- -

Bayes classifiers for imbalanced traffic accidents datasets

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Bayes classifiers for imbalanced traffic accidents datasets

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Mujalli, R es_ES
dc.contributor.author López-Maldonado, Griselda es_ES
dc.contributor.author Garach, L. es_ES
dc.date.accessioned 2019-05-15T20:29:25Z
dc.date.available 2019-05-15T20:29:25Z
dc.date.issued 2016 es_ES
dc.identifier.issn 0001-4575 es_ES
dc.identifier.uri http://hdl.handle.net/10251/120548
dc.description.abstract [EN] Traffic accidents data sets are usually imbalanced, where the number of instances classified under the killed or severe injuries class (minority) is much lower than those classified under the slight injuries class (majority). This, however, supposes a challenging problem for classification algorithms and may cause obtaining a model that well cover the slight injuries instances whereas the killed or severe injuries instances are misclassified frequently. Based on traffic accidents data collected on urban and suburban roads in Jordan for three years (2009-2011); three different data balancing techniques were used: under sampling which removes some instances of the majority class, oversampling which creates new instances of the minority class and a mix technique that combines both. In addition, different Bayes classifiers were compared for the different imbalanced and balanced data sets: Averaged One-Dependence Estimators, Weightily Average One-Dependence Estimators, and Bayesian networks in order to identify factors that affect the severity of an accident. The results indicated that using the balanced data sets, especially those created using oversampling techniques, with Bayesian networks improved classifying a traffic accident according to its severity and reduced the misclassification of killed and severe injuries instances. On the other hand, the following variables were found to contribute to the occurrence of a killed causality or a severe injury in a traffic accident: number of vehicles involved, accident pattern, number of directions, accident type, lighting, surface condition, and speed limit. This work, to the knowledge of the authors, is the first that aims at analyzing historical data records for traffic accidents occurring in Jordan and the first to apply balancing techniques to analyze injury severity of traffic accidents. (C) 2015 Elsevier Ltd. All rights reserved. es_ES
dc.description.sponsorship The authors are grateful to the Police Traffic Department in Jordan for providing the data necessary for this research. Griselda Lopez wishes to express her acknowledgement to the regional ministry of Economy, Innovation and Science of the regional government of Andalusia (Spain) for their scholarship to train teachers and researchers in Deficit Areas, which has made this work possible. The authors appreciate the reviewers' comments and effort in order to improve the paper.
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Accident Analysis & Prevention es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Bayesian networks es_ES
dc.subject Traffic accidents es_ES
dc.subject Urban area es_ES
dc.subject Imbalanced data set es_ES
dc.subject SMOTE es_ES
dc.subject.classification INGENIERIA E INFRAESTRUCTURA DE LOS TRANSPORTES es_ES
dc.title Bayes classifiers for imbalanced traffic accidents datasets es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.aap.2015.12.003 es_ES
dc.rights.accessRights Abierto es_ES
dc.date.embargoEndDate 9999-04-01 es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería e Infraestructura de los Transportes - Departament d'Enginyeria i Infraestructura dels Transports es_ES
dc.description.bibliographicCitation Mujalli, R.; López-Maldonado, G.; Garach, L. (2016). Bayes classifiers for imbalanced traffic accidents datasets. Accident Analysis & Prevention. 88:37-51. https://doi.org/10.1016/j.aap.2015.12.003 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.org/10.1016/j.aap.2015.12.003 es_ES
dc.description.upvformatpinicio 37 es_ES
dc.description.upvformatpfin 51 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 88 es_ES
dc.identifier.pmid 26710268
dc.relation.pasarela S\364256 es_ES
dc.contributor.funder Consejería de Innovación, Ciencia y Empresa, Junta de Andalucía


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem