- -

Random non-autonomous second order linear differential equations: mean square analytic solutions and their statistical properties

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Random non-autonomous second order linear differential equations: mean square analytic solutions and their statistical properties

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Calatayud-Gregori, Julia es_ES
dc.contributor.author Cortés, J.-C. es_ES
dc.contributor.author Jornet-Sanz, Marc es_ES
dc.contributor.author Villafuerte, Laura es_ES
dc.date.accessioned 2019-05-16T20:01:13Z
dc.date.available 2019-05-16T20:01:13Z
dc.date.issued 2018 es_ES
dc.identifier.issn 1687-1847 es_ES
dc.identifier.uri http://hdl.handle.net/10251/120594
dc.description.abstract [EN] In this paper we study random non-autonomous second order linear differential equations by taking advantage of the powerful theory of random difference equations. The coefficients are assumed to be stochastic processes, and the initial conditions are random variables both defined in a common underlying complete probability space. Under appropriate assumptions established on the data stochastic processes and on the random initial conditions, and using key results on difference equations, we prove the existence of an analytic stochastic process solution in the random mean square sense. Truncating the random series that defines the solution process, we are able to approximate the main statistical properties of the solution, such as the expectation and the variance. We also obtain error a priori bounds to construct reliable approximations of both statistical moments. We include a set of numerical examples to illustrate the main theoretical results established throughout the paper. We finish with an example where our findings are combined with Monte Carlo simulations to model uncertainty using real data. es_ES
dc.description.sponsorship This work has been supported by the Spanish Ministerio de Economia y Competitividad grant MTM2017-89664-P. Marc Jornet acknowledges the doctorate scholarship granted by Programa de Ayudas de Investigacion y Desarrollo (PAID), Universitat Politecnica de Valencia. es_ES
dc.language Inglés es_ES
dc.relation.ispartof Advances in Difference Equations es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Random second order linear difference and differential equation es_ES
dc.subject Analytic second order stochastic process es_ES
dc.subject L-p(Omega) es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Random non-autonomous second order linear differential equations: mean square analytic solutions and their statistical properties es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1186/s13662-018-1848-8 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MTM2017-89664-P/ES/PROBLEMAS DINAMICOS CON INCERTIDUMBRE SIMULABLE: MODELIZACION MATEMATICA, ANALISIS, COMPUTACION Y APLICACIONES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Calatayud-Gregori, J.; Cortés, J.; Jornet-Sanz, M.; Villafuerte, L. (2018). Random non-autonomous second order linear differential equations: mean square analytic solutions and their statistical properties. Advances in Difference Equations. (3):1-29. https://doi.org/10.1186/s13662-018-1848-8 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.org/10.1186/s13662-018-1848-8 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 29 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.issue 3 es_ES
dc.relation.pasarela S\370201 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Universitat Politècnica de València
dc.description.references Apostol, T.M.: Mathematical Analysis, 2nd edn. Pearson, New York (1976) es_ES
dc.description.references Boyce, W.E.: Probabilistic Methods in Applied Mathematics I. Academic Press, New York (1968) es_ES
dc.description.references Calbo, G., Cortés, J.C., Jódar, L.: Random Hermite differential equations: mean square power series solutions and statistical properties. Appl. Math. Comput. 218(7), 3654–3666 (2011) es_ES
dc.description.references Calbo, G., Cortés, J.C., Jódar, L., Villafuerte, L.: Solving the random Legendre differential equation: mean square power series solution and its statistical functions. Comput. Math. Appl. 61(9), 2782–2792 (2011) es_ES
dc.description.references Casabán, M.C., Cortés, J.C., Navarro-Quiles, A., Romero, J.V., Roselló, M.D., Villanueva, R.J.: Computing probabilistic solutions of the Bernoulli random differential equation. J. Comput. Appl. Math. 309, 396–407 (2017) es_ES
dc.description.references Casabán, M.C., Cortés, J.C., Romero, J.V., Roselló, M.D.: Solving random homogeneous linear second-order differential equations: a full probabilistic description. Mediterr. J. Math. 13(6), 3817–3836 (2016) es_ES
dc.description.references Cortés, J.C., Jódar, L., Camacho, J., Villafuerte, L.: Random Airy type differential equations: mean square exact and numerical solutions. Comput. Math. Appl. 60(5), 1237–1244 (2010) es_ES
dc.description.references Cortés, J.C., Jódar, L., Company, R., Villafuerte, L.: Laguerre random polynomials: definition, differential and statistical properties. Util. Math. 98, 283–295 (2015) es_ES
dc.description.references Cortés, J.C., Jódar, L., Villafuerte, L.: Random linear-quadratic mathematical models: computing explicit solutions and applications. Math. Comput. Simul. 79(7), 2076–2090 (2009) es_ES
dc.description.references Cortés, J.C., Jódar, L., Villafuerte, L.: Mean square solution of Bessel differential equation with uncertainties. J. Comput. Appl. Math. 309(1), 383–395 (2017) es_ES
dc.description.references Cortés, J.C., Sevilla-Peris, P., Jódar, L.: Analytic-numerical approximating processes of diffusion equation with data uncertainty. Comput. Math. Appl. 49(7–8), 1255–1266 (2005) es_ES
dc.description.references Díaz-Infante, S., Jerez, S.: Convergence and asymptotic stability of the explicit Steklov method for stochastic differential equations. J. Comput. Appl. Math. 291(1), 36–47 (2016) es_ES
dc.description.references Dorini, F., Cunha, M.: Statistical moments of the random linear transport equation. J. Comput. Phys. 227(19), 8541–8550 (2008) es_ES
dc.description.references Dorini, F.A., Cecconello, M.S., Dorini, M.B.: On the logistic equation subject to uncertainties in the environmental carrying capacity and initial population density. Commun. Nonlinear Sci. Numer. Simul. 33, 160–173 (2016) es_ES
dc.description.references Golmankhaneh, A.K., Porghoveh, N.A., Baleanu, D.: Mean square solutions of second-order random differential equations by using homotopy analysis method. Rom. Rep. Phys. 65(2), 350–362 (2013) es_ES
dc.description.references Grimmett, G.R., Stirzaker, D.R.: Probability and Random Processes. Clarendon Press, Oxford (2000) es_ES
dc.description.references Henderson, D., Plaschko, P.: Stochastic Differential Equations in Science and Engineering. Cambridge Texts in Applied Mathematics. World Scientific, Singapore (2006) es_ES
dc.description.references Hussein, A., Selim, M.M.: A developed solution of the stochastic Milne problem using probabilistic transformations. Appl. Math. Comput. 216(10), 2910–2919 (2009) es_ES
dc.description.references Hussein, A., Selim, M.M.: Solution of the stochastic transport equation of neutral particles with anisotropic scattering using RVT technique. Appl. Math. Comput. 213(1), 250–261 (2009) es_ES
dc.description.references Hussein, A., Selim, M.M.: Solution of the stochastic radiative transfer equation with Rayleigh scattering using RVT technique. Appl. Math. Comput. 218(13), 7193–7203 (2012) es_ES
dc.description.references Khodabin, M., Maleknejad, K., Rostami, M., Nouri, M.: Numerical solution of stochastic differential equations by second order Runge–Kutta methods. Math. Comput. Model. 53(9–10), 1910–1920 (2011) es_ES
dc.description.references Khodabin, M., Rostami, M.: Mean square numerical solution of stochastic differential equations by fourth order Runge–Kutta method and its application in the electric circuits with noise. Adv. Differ. Equ. 2015, 62 (2015) es_ES
dc.description.references Khudair, A.K., Ameen, A.A., Khalaf, S.L.: Mean square solutions of second-order random differential equations by using Adomian decomposition method. Appl. Math. Sci. 51(5), 2521–2535 (2011) es_ES
dc.description.references Khudair, A.K., Haddad, S.A.M., Khalaf, S.L.: Mean square solutions of second-order random differential equations by using the differential transformation method. Open J. Appl. Sci. 6, 287–297 (2016) es_ES
dc.description.references Lesaffre, E., Lawson, A.B.: Bayesian Biostatistics. Statistics in Practice. Wiley, New York (2012) es_ES
dc.description.references Li, X., Fu, X.: Stability analysis of stochastic functional differential equations with infinite delay and its application to recurrent neural networks. J. Comput. Appl. Math. 234(2), 407–417 (2010) es_ES
dc.description.references Licea, J.A., Villafuerte, L., Chen-Charpentier, B.M.: Analytic and numerical solutions of a Riccati differential equation with random coefficients. J. Comput. Appl. Math. 309(1), 208–219 (2013) es_ES
dc.description.references Liu, S., Debbouche, A., Wang, J.: On the iterative learning control for stochastic impulsive differential equations with randomly varying trial lengths. J. Comput. Appl. Math. 312, 47–57 (2017) es_ES
dc.description.references Loève, M.: Probability Theory. Vol. I. Springer, Mineola (1977) es_ES
dc.description.references Lord, G.J., Powell, C.E., Shardlow, T.: An Introduction to Computational Stochastic PDEs. Cambridge Texts in Applied Mathematics. Dover, New York (2014) es_ES
dc.description.references Nouri, K., Ranjbar, H.: Mean square convergence of the numerical solution of random differential equations. Mediterr. J. Math. 12(3), 1123–1140 (2015) es_ES
dc.description.references Rencher, A.C., Schaalje, G.B.: Linear Models in Statistics, 2nd edn. Wiley, New York (2008) es_ES
dc.description.references Santos, L.T., Dorini, F.A., Cunha, M.C.C.: The probability density function to the random linear transport equation. Appl. Math. Comput. 216(5), 1524–1530 (2010) es_ES
dc.description.references Seber, G.A.F., Wild, C.J.: Nonlinear Regression. Cambridge Texts in Applied Mathematics. Wiley, New York (2003) es_ES
dc.description.references Smith, R.C.: Uncertainty Quantification: Theory, Implementation, and Applications. SIAM, Philadelphia (2014) es_ES
dc.description.references Soheili, A.R., Toutounian, F., Soleymani, F.: A fast convergent numerical method for matrix sign function with application in SDEs (Stochastic Differential Equations). J. Comput. Appl. Math. 282, 167–178 (2015) es_ES
dc.description.references Soong, T.T.: Random Differential Equations in Science and Engineering. Academic Press, New York (1973) es_ES
dc.description.references Villafuerte, L., Braumann, C.A., Cortés, J.C., Jódar, L.: Random differential operational calculus: theory and applications. Comput. Math. Appl. 59(1), 115–125 (2010) es_ES
dc.description.references Xiu, D.: Numerical Methods for Stochastic Computations. A Spectral Method Approach. Cambridge Texts in Applied Mathematics. Princeton University Press, New York (2010) es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem