- -

The utility of fitness landscapes and big data for predicting evolution

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

The utility of fitness landscapes and big data for predicting evolution

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author De Visser, J.A.G.M. es_ES
dc.contributor.author Elena Fito, Santiago Fco. es_ES
dc.contributor.author Fragata, I. es_ES
dc.contributor.author Matuszewski, S. es_ES
dc.date.accessioned 2019-05-17T20:02:59Z
dc.date.available 2019-05-17T20:02:59Z
dc.date.issued 2018 es_ES
dc.identifier.issn 0018-067X es_ES
dc.identifier.uri http://hdl.handle.net/10251/120642
dc.language Inglés es_ES
dc.publisher Nature Publishing Group es_ES
dc.relation.ispartof Heredity es_ES
dc.rights Reconocimiento (by) es_ES
dc.title The utility of fitness landscapes and big data for predicting evolution es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1038/s41437-018-0128-4 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes es_ES
dc.description.bibliographicCitation De Visser, J.; Elena Fito, SF.; Fragata, I.; Matuszewski, S. (2018). The utility of fitness landscapes and big data for predicting evolution. Heredity. 121(5):401-405. https://doi.org/10.1038/s41437-018-0128-4 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.org/10.1038/s41437-018-0128-4 es_ES
dc.description.upvformatpinicio 401 es_ES
dc.description.upvformatpfin 405 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 121 es_ES
dc.description.issue 5 es_ES
dc.identifier.pmid 30127530
dc.identifier.pmcid PMC6180140
dc.relation.pasarela S\382642 es_ES
dc.description.references Acevedo A, Brosdsky L, Andino R (2014) Mutational and fitness landscapes of an RNA virus revealed through population sequencing. Nature 505:686–690 es_ES
dc.description.references Bank C, Matuszewski, Hietpas RT, Jensen JD (2016) On the (un)predictability of a large intragenic fitness landscape. Proc Natl Acad Sci USA 113:14085–14090 es_ES
dc.description.references Blanquart F, Achaz G, Bataillon T, Tenaillon O (2014) Properties of selected mutations and genotypic landscapes under Fisher’s geometric model. Evolution 68:3537–3554 es_ES
dc.description.references Blanquart F, Bataillon T (2016) Epistasis and the structure of fitness landscapes: Are experimental fitness landscapes compatible with Fisher’s geometric model? Genetics 203:847–862 es_ES
dc.description.references Catalán P, Arias CF, Cuesta JA, Manrubia SC (2017) Adaptive multiscapes: an up-to-date metaphor to visualize molecular adaptation. Biol Direct 12:7 es_ES
dc.description.references Cervera H, Lalić J, Elena SF (2016a) Effect of host species on topography of the fitness landscape for a plant RNA virus. J Virol 90:10160–10169 es_ES
dc.description.references Cervera H, Lalić J, Elena SF (2016b) Efficient escape from local optima in a highly rugged fitness landscape by evolving RNA virus populations. Proc R Soc B 283:20160984 es_ES
dc.description.references Cooper VS, Schneider D, Blot M, Lenski RE (2001) Mechanisms causing rapid and parallel losses of ribose catabolism in evolving populations of Escherichia coli B. J Bacteriol 183:2834–2841 es_ES
dc.description.references de Visser JAGM, Krug J (2014) Empirical fitness landscapes and the predictability of evolution. Nat Rev Genet 15:480–490 es_ES
dc.description.references de Vos MGJ, Dawid A, Sunderlikova V, Tans SJ (2015) Breaking evolutionary constraint with a tradeoff ratchet. Proc Natl Acad Sci USA 112:14906–14911 es_ES
dc.description.references Draghi JA, Plotkin JB (2013) Selection biases the prevalence and type of epistasis along adaptive trajectories. Evolution 67:3120–3131 es_ES
dc.description.references Ferretti L, Schmiegelt B, Weinreich DM, Yamauchi A, Kobayashi Y, Tajima F, Achaz G (2016) Measuring epistasis in fitness landscapes: the correlation of fitness effects of mutations. J Theor Biol 396:132–143 es_ES
dc.description.references Fisher RA (1930) The genetical theory of natural selection. Clarendon Press, Oxford es_ES
dc.description.references Flynn KM, Cooper TF, Moore FBG, Cooper VS (2013) The environment affects epistatic interactions to alter the topology of an empirical fitness landscape. PLoS Genet 9:e1003426 es_ES
dc.description.references Gorter FA, Aarts MGM, Zwaan BJ, de Visser JAGM (2018) Local fitness landscapes predict yeast evolutionary dynamics in directionally changing environments. Genetics 208:307–322 es_ES
dc.description.references Hietpa RT, Jensen JD, Bolona DNA (2011) Experimental illumination of a fitness landscape. Proc Natl Acad Sci USA 108:7896–7901 es_ES
dc.description.references Hwang S, Park SC, Krug J (2017) Genotypic complexity of Fisher’s geometric model. Genetics 206:1049–1079 es_ES
dc.description.references Khan AK, Dinh DM, Schneider D, Lenski RE, Cooper TF (2011) Negative epistasis between beneficial mutations in an evolving bacterial population. Science 332:1193–1196 es_ES
dc.description.references Kimura M (1968) Evolutionary rate at the molecular level. Nature 217:624–626 es_ES
dc.description.references Kondrashov DA, Kondrashov FA (2015) Topological features of rugged fitness landscapes in sequence space. Trends Genet 31:24–33 es_ES
dc.description.references Kryazhimskiy S, Rice DP, Jerison ER, Desai MM (2014) Global epistasis makes adaptation predictable despite sequence-level stochasticity. Science 344:1519–1522 es_ES
dc.description.references Lalić J, Elena SF (2012) Epistasis between mutations is host-dependent for an RNA virus. Biol Lett 9:20120396 es_ES
dc.description.references Lalić J, Elena SF (2015) The impact of high-order epistasis in the within-host fitness of a positive-sense plant RNA virus. J Evol Biol 28:2236–2247 es_ES
dc.description.references Lässig M, Mustonen V, Walczak AM (2017) Predicting evolution. Nat Ecol Evol 1:0077 es_ES
dc.description.references Lobkovsky AE, Koonin EV (2012) Replaying the tape of life: quantification of the predictability of evolution. Front Genet 3:246 es_ES
dc.description.references Luksza M, Lässig M (2014) A predictive fitness model for influenza. Nature 507:57–61 es_ES
dc.description.references Martin G (2014) Fisher’s geometrical model emerges as a property of complex integrated phenotypic networks. Genetics 197:237–255 es_ES
dc.description.references Martin G, Elena SF, Lenormand T (2007) Distribution of epistasis in microbes fit predictions from a fitness landscape model. Nat Genet 39:555–560 es_ES
dc.description.references Mustonen V, Lässig M (2009) From fitness landscapes to seascapes: non-equilibrium dynamics of selection and adaptation. Trends Genet 25:111–119 es_ES
dc.description.references Neher RA, Bedford T, Daniels RS, Russell CA, Shraiman BI (2016) Prediction, dynamics, and visualization of antigenic phenotypes of seasonal influenza viruses. Proc Natl Acad Sci USA 113:E1701–E1709 es_ES
dc.description.references Palmer AC, Toprak E, Baym M, Kim S, Veres A, Bershtein S, Kishony R (2015) Delayed commitment to evolutionary fate in antibiotic resistance fitness landscapes. Nat Commun 6:7385 es_ES
dc.description.references Salverda MLM, Dellus E, Gorter FA, Debets AJM, van der Oost J, Hoekstra RF, Tawfik DS, de Visser JAGM (2011) Initial mutations direct alternative pathways of protein evolution. PLoS Genet 7:e1001321 es_ES
dc.description.references Schenk MF, Szendro IG, Salverda MLM, Krug J, de Visser JAGM (2013) Patterns of epistasis between beneficial mutations in an antibiotic resistance gene. Mol Biol Evol 30:1779–1787 es_ES
dc.description.references Schoustra S, Hwang S, Krug J, de Visser JAGM (2016) Diminishing-returns epistasis among random beneficial mutations in a multicellular fungus. Proc R Soc B B283:20161376 es_ES
dc.description.references Szendro IG, Franke J, de Visser JAGM, Krug J (2013) Predictability of evolution depends non-monotonically on population size. Proc Natl Acad Sci USA 110:571–576 es_ES
dc.description.references Tenaillon O (2014) The utility of Fisher’s geometric model in evolutionary genetics. Annu Rev Ecol Evol Syst 45:179–201 es_ES
dc.description.references Weinreich DM, Delaney NF, DePristo MA, Hartl DL (2006) Darwinian evolution can follow only very few mutational paths to fitter proteins. Science 312:111–114 es_ES
dc.description.references Wiser MJ, Ribeck N, Lenski RE (2013) Long-term dynamics of adaptation in asexual populations. Science 342:1364–1367 es_ES
dc.description.references Woods RJ, Barrick JE, Cooper TF, Shrestha U, Kauth MR, Lenski RE (2011) Second-order selection for evolvability in a large Escherichia coli population. Science 331:1433–1436 es_ES
dc.description.references Wright S (1932) The roles of mutation, inbreeding, crossbreeding and selection in evolution. Proc 6th Int Cong Genet 1:356–366 es_ES
dc.description.references Zagorski M, Burda Z, Waclaw B (2016) Beyond the hypercube: evolutionary accessibility of fitness landscapes with realistic mutational networks. PLoS Comput Biol 12:e1005218 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem