Mostrar el registro sencillo del ítem
dc.contributor.author | Banerjee, Somnath | es_ES |
dc.contributor.author | Kumar Naskar, Sudip | es_ES |
dc.contributor.author | Rosso, Paolo | es_ES |
dc.contributor.author | Bandyopadhyay, Sivaji | es_ES |
dc.date.accessioned | 2019-05-19T20:02:35Z | |
dc.date.available | 2019-05-19T20:02:35Z | |
dc.date.issued | 2018 | es_ES |
dc.identifier.issn | 1064-1246 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/120700 | |
dc.description.abstract | [EN] Before the advent of the Internet era, code-mixing was mainly used in the spoken form. However, with the recent popular informal networking platforms such as Facebook, Twitter, Instagram, etc., in social media, code-mixing is being used more and more in written form. User-generated social media content is becoming an increasingly important resource in applied linguistics. Recent trends in social media usage have led to a proliferation of studies on social media content. Multilingual social media users often write native language content in non-native script (cross-script). Recently Banerjee et al. [9] introduced the code-mixed cross-script question answering research problem and reported that the ever increasing social media content could serve as a potential digital resource for less-computerized languages to build question answering systems. Question classification is a core task in question answering in which questions are assigned a class or a number of classes which denote the expected answer type(s). In this research work, we address the question classification task as part of the code-mixed cross-script question answering research problem. We combine deep learning framework with feature engineering to address the question classification task and enhance the state-of-the-art question classification accuracy by over 4% for code-mixed cross-script questions. | es_ES |
dc.description.sponsorship | The work of the third author was partially supported by the SomEMBED TIN2015-71147-C2-1-P MINECO research project. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | IOS Press | es_ES |
dc.relation.ispartof | Journal of Intelligent & Fuzzy Systems | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Question answering | es_ES |
dc.subject | Code-mixing | es_ES |
dc.subject | Cross-scripting | es_ES |
dc.subject | Question classification | es_ES |
dc.subject | Deep learning | es_ES |
dc.subject | Social media content | es_ES |
dc.subject.classification | LENGUAJES Y SISTEMAS INFORMATICOS | es_ES |
dc.title | Code Mixed Cross Script Factoid Question Classification - A Deep Learning Approach | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3233/JIFS-169481 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//TIN2015-71147-C2-1-P/ES/COMPRENSION DEL LENGUAJE EN LOS MEDIOS DE COMUNICACION SOCIAL - REPRESENTANDO CONTEXTOS DE FORMA CONTINUA/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació | es_ES |
dc.description.bibliographicCitation | Banerjee, S.; Kumar Naskar, S.; Rosso, P.; Bandyopadhyay, S. (2018). Code Mixed Cross Script Factoid Question Classification - A Deep Learning Approach. Journal of Intelligent & Fuzzy Systems. 34(5):2959-2969. https://doi.org/10.3233/JIFS-169481 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3233/JIFS-169481 | es_ES |
dc.description.upvformatpinicio | 2959 | es_ES |
dc.description.upvformatpfin | 2969 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 34 | es_ES |
dc.description.issue | 5 | es_ES |
dc.relation.pasarela | S\384156 | es_ES |
dc.contributor.funder | Ministerio de Economía y Empresa | es_ES |