Ghosh, A., Li, G., Veale, T., Rosso, P., Shutova, E., Reyes, A., Barnden, J.: Semeval-2015 task 11: sentiment analysis of figurative language in Twitter. In: 9th International Workshop on Semantic Evaluation (SemEval), Co-located with NAACL, Denver, Colorado, pp. 470–478. Association for Computational Linguistics (2015)
Reyes, A., Rosso, P., Veale, T.: A multidimensional approach for detecting irony in Twitter. Lang. Resour. Eval. 47(1), 239–268 (2013)
Reyes, A., Rosso, P., Buscaldi, D.: From humor recognition to irony detection: the figurative language of social media. Data Knowl. Eng. 74, 1–12 (2012)
[+]
Ghosh, A., Li, G., Veale, T., Rosso, P., Shutova, E., Reyes, A., Barnden, J.: Semeval-2015 task 11: sentiment analysis of figurative language in Twitter. In: 9th International Workshop on Semantic Evaluation (SemEval), Co-located with NAACL, Denver, Colorado, pp. 470–478. Association for Computational Linguistics (2015)
Reyes, A., Rosso, P., Veale, T.: A multidimensional approach for detecting irony in Twitter. Lang. Resour. Eval. 47(1), 239–268 (2013)
Reyes, A., Rosso, P., Buscaldi, D.: From humor recognition to irony detection: the figurative language of social media. Data Knowl. Eng. 74, 1–12 (2012)
Patra, B.G., Mandal, S., Das, D., Bandyopadhyay, S.: JU_CSE: a conditional random field (CRF) based approach to aspect based sentiment analysis. In: 8th International Workshop on Semantic Evaluation (SemEval), Co-located with COLING, Dublin, Ireland, pp. 370–374. Association for Computational Linguistics (2014)
Ozdemir, C., Bergler, S.: CLaC-SentiPipe: SemEval2015 subtasks 10 B, E, and task 11. In: 9th International Workshop on Semantic Evaluation (SemEval), Co-located with NAACL, Denver, Colorado, pp. 479–485. Association for Computational Linguistics (2015)
Strapparava, C., Valitutti, A.: Wordnet-affect: an affective extension of wordnet. In: 4th International Conference on Language Resources and Evaluation, pp. 1083–1086 (2004)
Léger, J.C.: Menger curvature and rectifiability. Ann. Math. 149, 831–869 (1999)
Lafferty, J.D., McCallum, A., Pereira, F.C.N.: Conditional random fields: probabilistic models for segmenting and labeling sequence data. In: 18th International Conference on Machine Learning, pp. 282–289 (2001)
de Albornoz, J.C., Plaza, L., Gervas, P.: SentiSense: an easily scalable concept-based affective lexicon for sentiment analysis. In: 8th International Conference on Language Resources and Evaluation, pp. 3562–3567 (2012)
Taboada, M., Brooke, J., Tofiloski, M., Voll, K., Stede, M.: Lexicon-based methods for sentiment analysis. Comput. Linguist. 37(2), 267–307 (2011)
Naveed, N., Gottron, T., Kunegis, J., Alhadi, A.C.: Bad news travel fast: a content-based analysis of interestingness on Twitter. In: 3rd International Web Science Conference. ACM (2011)
Owoputi, O., O’Connor, B., Dyer, C., Gimpel, K., Schneider, N., Smith, N.A.: Improved part-of-speech tagging for online conversational text with word clusters. In: NAACL. Association for Computational Linguistics (2013)
Mohammad, S., Turney, P.: Crowdsourcing a word-emotion association lexicon. Comput. Intell. 29(3), 436–465 (2013)
Baccianella, S., Esuli, A., Sebastiani, F.: Sentiwordnet 3.0: an enhanced lexical resource for sentiment analysis and opinion mining. In: 7th Conference on International Language Resources and Evaluation, Valletta, Malta (2010)
Choi, Y., Wiebe, J.: +/ $$-$$ EffectWordNet: sense-level lexicon acquisition for opinion inference. In: EMNLP (2014)
Whissell, C., Fournier, M., Pelland, R., Weir, D., Makarec, K.: A dictionary of affect in language: IV. Reliability, validity, and applications. Percept. Mot. Skills 62(3), 875–888 (1986)
Patra, B.G., Takamura, H., Das, D., Okumura, M., Bandyopadhyay, S.: Construction of emotional lexicon using potts model. In: International Joint Conference on Natural Language Processing (IJCNLP), pp. 674–679 (2013)
Pang, B., Lee, L.: Opinion mining and sentiment analysis. Found. Trends Inf. Retr. 2, 1–135 (2008)
Vilares, D., Alonso, M.A., Gomez, C.: On the usefulness of lexical and syntactic processing in polarity classification of Twitter messages. J. Assoc. Inf. Sci. Technol. 66(9), 1799–1816 (2015)
Barbieri, F., Ronzano, F., Saggion, H.: UPF-taln: SemEval 2015 tasks 10 and 11 sentiment analysis of literal and figurative language in Twitter. In: SemEval-2015, pp. 704–708 (2015)
[-]