- -

A Multilevel Approach to Sentiment Analysis of Figurative Language in Twitter

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A Multilevel Approach to Sentiment Analysis of Figurative Language in Twitter

Mostrar el registro completo del ítem

Gopal Patra, B.; Mazumda, S.; Das, D.; Rosso, P.; Bandyopadhyay, S. (2018). A Multilevel Approach to Sentiment Analysis of Figurative Language in Twitter. Lecture Notes in Computer Science. 9624:281-291. https://doi.org/10.1007/978-3-319-75487-1_22

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/120701

Ficheros en el ítem

Metadatos del ítem

Título: A Multilevel Approach to Sentiment Analysis of Figurative Language in Twitter
Autor: Gopal Patra, Braja Mazumda, Soumadeep Das, Dipankar Rosso, Paolo Bandyopadhyay, Sivaji
Entidad UPV: Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació
Fecha difusión:
Resumen:
[EN] Commendable amount of work has been attempted in the field of Sentiment Analysis or Opinion Mining from natural language texts and Twitter texts. One of the main goals in such tasks is to assign polarities (positive ...[+]
Palabras clave: Figurative text , Sentiment analysis , Sentiment abruptness measure , Irony , Sarcasm , Metaphor
Derechos de uso: Reserva de todos los derechos
Fuente:
Lecture Notes in Computer Science. (issn: 0302-9743 )
DOI: 10.1007/978-3-319-75487-1_22
Editorial:
Springer-Verlag
Versión del editor: https://doi.org/10.1007/978-3-319-75487-1_22
Título del congreso: 17th International Conference on Intelligent Text Processing and Computational Linguistics (CICLing 2016)
Lugar del congreso: Konya, Turquía
Fecha congreso: Abril 03-09,2016
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//TIN2015-71147-C2-1-P/ES/COMPRENSION DEL LENGUAJE EN LOS MEDIOS DE COMUNICACION SOCIAL - REPRESENTANDO CONTEXTOS DE FORMA CONTINUA/
info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2014%2F030/ES/ Adaptive learning and multimodality in machine translation and text transcription/
Agradecimientos:
The work reported in this paper is supported by a grant from the project “CLIA System Phase II” funded by Department of Electronics and Information Technology (DeitY), Ministry of Communications and Information Technology ...[+]
Tipo: Artículo Comunicación en congreso

References

Ghosh, A., Li, G., Veale, T., Rosso, P., Shutova, E., Reyes, A., Barnden, J.: Semeval-2015 task 11: sentiment analysis of figurative language in Twitter. In: 9th International Workshop on Semantic Evaluation (SemEval), Co-located with NAACL, Denver, Colorado, pp. 470–478. Association for Computational Linguistics (2015)

Reyes, A., Rosso, P., Veale, T.: A multidimensional approach for detecting irony in Twitter. Lang. Resour. Eval. 47(1), 239–268 (2013)

Reyes, A., Rosso, P., Buscaldi, D.: From humor recognition to irony detection: the figurative language of social media. Data Knowl. Eng. 74, 1–12 (2012) [+]
Ghosh, A., Li, G., Veale, T., Rosso, P., Shutova, E., Reyes, A., Barnden, J.: Semeval-2015 task 11: sentiment analysis of figurative language in Twitter. In: 9th International Workshop on Semantic Evaluation (SemEval), Co-located with NAACL, Denver, Colorado, pp. 470–478. Association for Computational Linguistics (2015)

Reyes, A., Rosso, P., Veale, T.: A multidimensional approach for detecting irony in Twitter. Lang. Resour. Eval. 47(1), 239–268 (2013)

Reyes, A., Rosso, P., Buscaldi, D.: From humor recognition to irony detection: the figurative language of social media. Data Knowl. Eng. 74, 1–12 (2012)

Patra, B.G., Mandal, S., Das, D., Bandyopadhyay, S.: JU_CSE: a conditional random field (CRF) based approach to aspect based sentiment analysis. In: 8th International Workshop on Semantic Evaluation (SemEval), Co-located with COLING, Dublin, Ireland, pp. 370–374. Association for Computational Linguistics (2014)

Ozdemir, C., Bergler, S.: CLaC-SentiPipe: SemEval2015 subtasks 10 B, E, and task 11. In: 9th International Workshop on Semantic Evaluation (SemEval), Co-located with NAACL, Denver, Colorado, pp. 479–485. Association for Computational Linguistics (2015)

Strapparava, C., Valitutti, A.: Wordnet-affect: an affective extension of wordnet. In: 4th International Conference on Language Resources and Evaluation, pp. 1083–1086 (2004)

Léger, J.C.: Menger curvature and rectifiability. Ann. Math. 149, 831–869 (1999)

Lafferty, J.D., McCallum, A., Pereira, F.C.N.: Conditional random fields: probabilistic models for segmenting and labeling sequence data. In: 18th International Conference on Machine Learning, pp. 282–289 (2001)

de Albornoz, J.C., Plaza, L., Gervas, P.: SentiSense: an easily scalable concept-based affective lexicon for sentiment analysis. In: 8th International Conference on Language Resources and Evaluation, pp. 3562–3567 (2012)

Taboada, M., Brooke, J., Tofiloski, M., Voll, K., Stede, M.: Lexicon-based methods for sentiment analysis. Comput. Linguist. 37(2), 267–307 (2011)

Naveed, N., Gottron, T., Kunegis, J., Alhadi, A.C.: Bad news travel fast: a content-based analysis of interestingness on Twitter. In: 3rd International Web Science Conference. ACM (2011)

Owoputi, O., O’Connor, B., Dyer, C., Gimpel, K., Schneider, N., Smith, N.A.: Improved part-of-speech tagging for online conversational text with word clusters. In: NAACL. Association for Computational Linguistics (2013)

Mohammad, S., Turney, P.: Crowdsourcing a word-emotion association lexicon. Comput. Intell. 29(3), 436–465 (2013)

Baccianella, S., Esuli, A., Sebastiani, F.: Sentiwordnet 3.0: an enhanced lexical resource for sentiment analysis and opinion mining. In: 7th Conference on International Language Resources and Evaluation, Valletta, Malta (2010)

Choi, Y., Wiebe, J.: +/ $$-$$ EffectWordNet: sense-level lexicon acquisition for opinion inference. In: EMNLP (2014)

Whissell, C., Fournier, M., Pelland, R., Weir, D., Makarec, K.: A dictionary of affect in language: IV. Reliability, validity, and applications. Percept. Mot. Skills 62(3), 875–888 (1986)

Patra, B.G., Takamura, H., Das, D., Okumura, M., Bandyopadhyay, S.: Construction of emotional lexicon using potts model. In: International Joint Conference on Natural Language Processing (IJCNLP), pp. 674–679 (2013)

Pang, B., Lee, L.: Opinion mining and sentiment analysis. Found. Trends Inf. Retr. 2, 1–135 (2008)

Vilares, D., Alonso, M.A., Gomez, C.: On the usefulness of lexical and syntactic processing in polarity classification of Twitter messages. J. Assoc. Inf. Sci. Technol. 66(9), 1799–1816 (2015)

Barbieri, F., Ronzano, F., Saggion, H.: UPF-taln: SemEval 2015 tasks 10 and 11 sentiment analysis of literal and figurative language in Twitter. In: SemEval-2015, pp. 704–708 (2015)

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem