- -

Multi-elastic Datacenters: Auto-scaled Virtual Clusters on Energy-Aware Physical Infrastructures

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Multi-elastic Datacenters: Auto-scaled Virtual Clusters on Energy-Aware Physical Infrastructures

Mostrar el registro completo del ítem

Alfonso Laguna, CD.; Caballer Fernández, M.; Calatrava Arroyo, A.; Moltó, G.; Blanquer Espert, I. (2018). Multi-elastic Datacenters: Auto-scaled Virtual Clusters on Energy-Aware Physical Infrastructures. Journal of Grid Computing. 17(1):191-204. https://doi.org/10.1007/s10723-018-9449-z

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/120931

Ficheros en el ítem

Metadatos del ítem

Título: Multi-elastic Datacenters: Auto-scaled Virtual Clusters on Energy-Aware Physical Infrastructures
Autor: Alfonso Laguna, Carlos De Caballer Fernández, Miguel Calatrava Arroyo, Amanda Moltó, Germán Blanquer Espert, Ignacio
Entidad UPV: Universitat Politècnica de València. Instituto de Instrumentación para Imagen Molecular - Institut d'Instrumentació per a Imatge Molecular
Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació
Fecha difusión:
Resumen:
[EN] Computer clusters are widely used platforms to execute different computational workloads. Indeed, the advent of virtualization and Cloud computing has paved the way to deploy virtual elastic clusters on top of Cloud ...[+]
Palabras clave: Cloud computing , Green computing , Elasticity , Virtualization , Infrastructure management
Derechos de uso: Reserva de todos los derechos
Fuente:
Journal of Grid Computing. (issn: 1570-7873 )
DOI: 10.1007/s10723-018-9449-z
Editorial:
Springer-Verlag
Versión del editor: http://doi.org/10.1007/s10723-018-9449-z
Código del Proyecto:
info:eu-repo/grantAgreement/EC/H2020/777154/EU/Adaptive, Trustworthy, Manageable, Orchestrated, Secure, Privacy-assuring, Hybrid Ecosystem for REsilient Cloud Computing/
info:eu-repo/grantAgreement/MINECO//TIN2016-79951-R/ES/COMPUTACION BIG DATA Y DE ALTAS PRESTACIONES SOBRE MULTI-CLOUDS ELASTICOS/
Agradecimientos:
The results of this work have been partially supported by ATMOSPHERE (Adaptive, Trustworthy, Manageable, Orchestrated, Secure, Privacy-assuring Hybrid, Ecosystem for Resilient Cloud Computing), funded by the European ...[+]
Tipo: Artículo

References

Buyya, R.: High Performance Cluster Computing: Architectures and Systems. Prentice Hall PTR, Upper Saddle River (1999)

de Alfonso, C., Caballer, M., Alvarruiz, F., Moltó, G.: An economic and energy-aware analysis of the viability of outsourcing cluster computing to the cloud. Futur. Gener. Comput. Syst. (Int. J. Grid Comput eScience) 29, 704–712 (2013). https://doi.org/10.1016/j.future.2012.08.014

Williams, D., Jamjoom, H., Liu, Y.H., Weatherspoon, H.: Overdriver: handling memory overload in an oversubscribed cloud. ACM SIGPLAN Not. 46(7), 205 (2011). https://doi.org/10.1145/2007477.1952709 . http://dl.acm.org/citation.cfm?id=2007477.1952709 [+]
Buyya, R.: High Performance Cluster Computing: Architectures and Systems. Prentice Hall PTR, Upper Saddle River (1999)

de Alfonso, C., Caballer, M., Alvarruiz, F., Moltó, G.: An economic and energy-aware analysis of the viability of outsourcing cluster computing to the cloud. Futur. Gener. Comput. Syst. (Int. J. Grid Comput eScience) 29, 704–712 (2013). https://doi.org/10.1016/j.future.2012.08.014

Williams, D., Jamjoom, H., Liu, Y.H., Weatherspoon, H.: Overdriver: handling memory overload in an oversubscribed cloud. ACM SIGPLAN Not. 46(7), 205 (2011). https://doi.org/10.1145/2007477.1952709 . http://dl.acm.org/citation.cfm?id=2007477.1952709

Valentini, G., Lassonde, W., Khan, S., Min-Allah, N., Madani, S., Li, J., Zhang, L., Wang, L., Ghani, N., Kolodziej, J., Li, H., Zomaya, A., Xu, C.Z., Balaji, P., Vishnu, A., Pinel, F., Pecero, J., Kliazovich, D., Bouvry, P.: An overview of energy efficiency techniques in cluster computing systems. Clust. Comput. 16(1), 3–15 (2013). https://doi.org/10.1007/s10586-011-0171-x

De Alfonso, C., Caballer, M., Hernández, V.: Efficient power management in high performance computer clusters. In: Proceedings of the 1st International Multi-conference on Innovative Developments in ICT, Proceedings of the International Conference on Green Computing 2010 (ICGreen 2010), 39–44 (2010)

OpenNebula: OpenNebula Cloud Software https://opennebula.org/ . [Online; accessed 12-June-2017]

OpenStack: OpenStack Cloud Software. http://openstack.org . [Online; accessed 12 June 2017]

VMWare: VMWare vCenter Server. https://www.vmware.com/products/vcenter-server.html . [Online; accessed 12 June 2017]

De Alfonso, C., Blanquer, I.: Automatic consolidation of virtual machines in on-premises cloud platforms. In: IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing, pp 1070–1079 (2017). https://doi.org/10.1109/CCGRID.2017.128

Chase, J.S., Irwin, D.E., Grit, L.E., Moore, J.D., Sprenkle, S.E.: Dynamic virtual clusters in a grid site manager. In: Proceedings of the 12th IEEE International Symposium on High Performance Distributed Computing, HPDC ’03, p 90. IEEE Computer Society, Washington, DC (2003). http://dl.acm.org/citation.cfm?id=822087.823392

Doelitzscher, F., Held, M., Reich, C., Sulistio, A.: Viteraas: Virtual cluster as a service. In: 2011 IEEE Third International Conference on Cloud Computing Technology and Science (CloudCom), pp 652–657 (2011). https://doi.org/10.1109/CloudCom.2011.101

Wei, X., Wang, H., Li, H., Zou, L.: Dynamic deployment and management of elastic virtual clusters. In: 2011 Sixth Annual Chinagrid Conference (ChinaGrid), pp 35–41 (2011). https://doi.org/10.1109/ChinaGrid.2011.31

de Assuncao, M.D., di Costanzo, A., Buyya, R.: Evaluating the cost-benefit of using cloud computing to extend the capacity of clusters. In: Proceedings of the 18th ACM International Symposium on High Performance Distributed Computing, HPDC ’09, pp 141–150. ACM, New York (2009). https://doi.org/10.1145/1551609.1551635 . http://doi.acm.org/10.1145/1551609.1551635

Marshall, P., Keahey, K., Freeman, T.: Elastic site: Using clouds to elastically extend site resources. In: 2010 10th IEEE/ACM International Conference on Cluster, Cloud and Grid Computing (CCGrid), pp 43–52 (2010). https://doi.org/10.1109/CCGRID.2010.80

Niu, S., Zhai, J., Ma, X., Tang, X., Chen, W.: Cost-effective cloud hpc resource provisioning by building semi-elastic virtual clusters. In: Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis, SC ’13, pp 56:1–56:12. ACM, New York (2013). https://doi.org/10.1145/2503210.2503236 . http://doi.acm.org/10.1145/2503210.2503236

Bialecki, A., Cafarella, M., Cutting, D., Omalley, O.: Hadoop: a framework for running applications on large clusters built of commodity hardware. Tech. rep. Apache Hadoop. http://hadoop.apache.org (2005)

MIT: StarCluster Elastic Load Balancer. http://web.mit.edu/stardev/cluster/docs/0.92rc2/manual/load_balancer.html

Appliance, C.C.S.: Creating elastic virtual clusters. http://cernvm.cern.ch/portal/elasticclusters (2015)

Research project, T.G.: The games research project. http://www.green-datacenters.eu (2013)

Cioara, T., Anghel, I., Salomie, I., Copil, G., Moldovan, D., Kipp, A.: Energy aware dynamic resource consolidation algorithm for virtualized service centers based on reinforcement learning. In: 2011 10th International Symposium on Parallel and Distributed Computing (ISPDC), pp 163–169 (2011). https://doi.org/10.1109/ISPDC.2011.32

Farahnakian, F., Liljeberg, P., Plosila, J.: Energy-efficient virtual machines consolidation in cloud data centers using reinforcement learning. In: 2014 22nd Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP), pp 500–507 (2014). https://doi.org/10.1109/PDP.2014.109

Masoumzadeh, S., Hlavacs, H.: Integrating vm selection criteria in distributed dynamic vm consolidation using fuzzy q-learning. In: 2013 9th International Conference on Network and Service Management (CNSM), pp 332–338 (2013). https://doi.org/10.1109/CNSM.2013.6727854

Feller, E., Rilling, L., Morin, C.: Energy-aware ant colony based workload placement in clouds. In: 2011 12th IEEE/ACM International Conference on Grid Computing (GRID), pp 26–33 (2011). https://doi.org/10.1109/Grid.2011.13

Pop, C.B., Anghel, I., Cioara, T., Salomie, I., Vartic, I.: A swarm-inspired data center consolidation methodology. In: Proceedings of the 2nd International Conference on Web Intelligence, Mining and Semantics, WIMS ’12, pp 41:1–41:7. ACM, New York (2012). https://doi.org/10.1145/2254129.2254180

Marzolla, M., Babaoglu, O., Panzieri, F.: Server consolidation in clouds through gossiping. In: Proceedings of the 2011 IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks, WOWMOM ’11, pp 1–6. IEEE Computer Society, Washington, DC (2011). https://doi.org/10.1109/WoWMoM.2011.5986483

Ghafari, S., Fazeli, M., Patooghy, A., Rikhtechi, L.: Bee-mmt: A load balancing method for power consumption management in cloud computing. In: 2013 Sixth International Conference on Contemporary Computing (IC3), pp 76–80 (2013). https://doi.org/10.1109/IC3.2013.6612165

Ajiro, Y., Tanaka, A.: Improving packing algorithms for server consolidation. In: International CMG Conference, pp. 399–406. Computer Measurement Group (2007)

Verma, A., Ahuja, P., Neogi, A.: pmapper: power and migration cost aware application placement in virtualized systems. In: Proceedings of the 9th ACM/IFIP/USENIX International Conference on Middleware, Middleware ’08, pp 243–264. Springer, New York (2008)

Beloglazov, A., Abawajy, J., Buyya, R.: Energy-aware resource allocation heuristics for efficient management of data centers for cloud computing. Future Gener. Comput. Syst. 28 (5), 755–768 (2012). https://doi.org/10.1016/j.future.2011.04.017

Guazzone, M., Anglano, C., Canonico, M.: Exploiting vm migration for the automated power and performance management of green cloud computing systems. In: Proceedings of the First International Conference on Energy Efficient Data Centers, E2DC’12, pp 81–92. Springer, Berlin (2012). https://doi.org/10.1007/978-3-642-33645-4_8

Shi, L., Furlong, J., Wang, R.: Empirical evaluation of vector bin packing algorithms for energy efficient data centers. In: 2013 IEEE Symposium on Computers and Communications (ISCC), pp 000,009–000,015 (2013). https://doi.org/10.1109/ISCC.2013.6754915

Tomás, L., Tordsson, J.: Improving cloud infrastructure utilization through overbooking. In: Proceedings of the 2013 ACM Cloud and Autonomic Computing Conference on - CAC ’13, p 1. ACM Press, New York (2013). https://doi.org/10.1145/2494621.2494627

Dawoud, W., Takouna, I., Meinel, C.: Elastic vm for cloud resources provisioning optimization. In: Abraham, A., Lloret Mauri, J., Buford, J., Suzuki, J., Thampi, S. (eds.) Advances in Computing and Communications, Communications in Computer and Information Science, vol. 190, pp 431–445. Springer, Berlin (2011). https://doi.org/10.1007/978-3-642-22709-7_43

Tasoulas, E., Haugerund, H.R., Begnum, K.: Bayllocator: a proactive system to predict server utilization and dynamically allocate memory resources using Bayesian networks and ballooning. In: Proceedings of the 26th International Conference on Large Installation System Administration: Strategies, Tools, and Techniques, pp. 111–122. USENIX Association (2012)

Hines, M.R., Gordon, A., Silva, M., Da Silva, D., Ryu, K., Ben-Yehuda, M.: Applications know best: performance-driven memory overcommit with Ginkgo. In: 2011 IEEE Third International Conference on Cloud Computing Technology and Science, pp. 130–137. IEEE. https://doi.org/10.1109/CloudCom.2011.27 (2011)

Litke, A.: Manage resources on overcommitted KVM hosts. Tech. rep. IBM. http://www.ibm.com/developerworks/library/l-overcommit-kvm-resources/ (2011)

De Alfonso, C., Caballer, M., Alvarruiz, F., Hernández, V.: An energy management system for cluster infrastructures. Comput. Electr. Eng. 39(8), 2579–2590 (2013). https://doi.org/10.1016/j.compeleceng.2013.05.004

Moltó, G., Caballer, M, de Alfonso, C.: Automatic memory-based vertical elasticity and oversubscription on cloud platforms. Futur. Gener. Comput. Syst. 56, 1–10 (2016). https://doi.org/10.1016/j.future.2015.10.002

Calatrava, A., Romero, E., Moltó, G., Caballer, M., Alonso, J.M.: Self-managed cost-efficient virtual elastic clusters on hybrid Cloud infrastructures. Futur. Gener. Comput. Syst. 61, 13–25 (2016). https://doi.org/10.1016/j.future.2016.01.018 . http://authors.elsevier.com/sd/article/S0167739X16300024 , http://linkinghub.elsevier.com/retrieve/pii/S0167739X16300024

Caballer, M., Chatziangelou, M., Calatrava, A., Moltó, G., Pérez, A.: IM integration in the EGI VMOps Dashboard. In: EGI Conference 2017 and INDIGO Summit 2017 (2017)

Calatrava, A., Caballer, M., Moltó, G., Pérez, A.: Virtual Elastic Clusters in the EGI LToS with EC3. In: EGI Conference 2017 and INDIGO Summit 2017 (2017)

Iosup, A., Li, H., Jan, M., Anoep, S., Dumitrescu, C., Wolters, L., Epema, D.H.: The grid workloads archive. Futur. Gener. Comput. Syst. 24(7), 672–686 (2008). https://doi.org/10.1016/j.future.2008.02.003 . http://www.sciencedirect.com/science/article/pii/S0167739X08000125

Nordugrid dataset, the grid workloads archive (Online; accessed 27-March-2017). http://gwa.ewi.tudelft.nl/datasets/gwa-t-3-nordugrid/report/

Caballer, M., Blanquer, I., Moltó, G., de Alfonso, C: Dynamic Management of Virtual Infrastructures. J. Grid Comput. 13, 53–70 (2015). https://doi.org/10.1007/s10723-014-9296-5 . http://link.springer.com/article/10.1007/s10723-014-9296-5

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem