- -

Review article: Climate change impacts on dam safety

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Review article: Climate change impacts on dam safety

Mostrar el registro completo del ítem

Fluixá Sanmartín, J.; Altarejos García, L.; Morales Torres, A.; Escuder Bueno, I. (2018). Review article: Climate change impacts on dam safety. Natural Hazards and Earth System Sciences. 18(9):2471-2488. https://doi.org/10.5194/nhess-18-2471-2018

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/120933

Ficheros en el ítem

Metadatos del ítem

Título: Review article: Climate change impacts on dam safety
Autor: Fluixá Sanmartín, Javier Altarejos García, Luis Morales Torres, Adrián Escuder Bueno, Ignacio
Entidad UPV: Universitat Politècnica de València. Instituto Universitario de Ingeniería del Agua y del Medio Ambiente - Institut Universitari d'Enginyeria de l'Aigua i Medi Ambient
Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient
Fecha difusión:
Resumen:
[EN] Dams as well as protective dikes and levees are critical infrastructures whose associated risk must be properly managed in a continuous and updated process. Usually, dam safety management has been carried out assuming ...[+]
Derechos de uso: Reconocimiento (by)
Fuente:
Natural Hazards and Earth System Sciences. (issn: 1561-8633 )
DOI: 10.5194/nhess-18-2471-2018
Versión del editor: https://doi.org/10.5194/nhess-18-2471-2018
Tipo: Artículo

References

Altarejos-García, L., Escuder-Bueno, I., Serrano-Lombillo, A., and de Membrillera-Ortuño, M.: Methodology for estimating the probability of failure by sliding in concrete gravity dams in the context of risk analysis, Struct. Saf., 36–37, 1–13, https://doi.org/10.1016/j.strusafe.2012.01.001, 2012. a

ANCOLD: Guidelines on Risk Assessment, Tech. rep., Australian National Committee on Large Dams, 2003. a, b

Anderson, B., Rutherfurd, I., and Western, A.: An analysis of the influence of riparian vegetation on the propagation of flood waves, Environ. Model. Softw., 21, 1290–1296, https://doi.org/10.1016/j.envsoft.2005.04.027, 2006. a [+]
Altarejos-García, L., Escuder-Bueno, I., Serrano-Lombillo, A., and de Membrillera-Ortuño, M.: Methodology for estimating the probability of failure by sliding in concrete gravity dams in the context of risk analysis, Struct. Saf., 36–37, 1–13, https://doi.org/10.1016/j.strusafe.2012.01.001, 2012. a

ANCOLD: Guidelines on Risk Assessment, Tech. rep., Australian National Committee on Large Dams, 2003. a, b

Anderson, B., Rutherfurd, I., and Western, A.: An analysis of the influence of riparian vegetation on the propagation of flood waves, Environ. Model. Softw., 21, 1290–1296, https://doi.org/10.1016/j.envsoft.2005.04.027, 2006. a

Andreu, J., Capilla, J., and Sanchís, E.: AQUATOOL, a generalized decision-support system for water-resources planning and operational management, J. Hydrol., 177, 269–291, https://doi.org/10.1016/0022-1694(95)02963-X, 1996. a

Ardiles, L., Sanz, D., Moreno, P., Jenaro, E., Fleitz, J., and Escuder-Bueno, I.: Risk Assessment and Management for 26 Dams Operated By the Duero River Authority (Spain), in: 6th International Conference on Dam Engineering, edited by: Pina, C., Portela, E., Gomes, J., Lisbon, Portugal, 15–17 February 2011. a

Arheimer, B. and Lindström, G.: Climate impact on floods: changes in high flows in Sweden in the past and the future (1911–2100), Hydrol. Earth Syst. Sci., 19, 771–784, https://doi.org/10.5194/hess-19-771-2015, 2015. a

Arnbjerg-Nielsen, K., Willems, P., Olsson, J., Beecham, S., Pathirana, A., Bülow Gregersen, I., Madsen, H., and Nguyen, V.-T.-V.: Impacts of climate change on rainfall extremes and urban drainage systems: a review, Water Sci. Technol., 68, 16–28, https://doi.org/10.2166/wst.2013.251, 2013. a

Atkins: Impact of Climate Change on Dams & Reservoirs, Final Guidance Report FD2628, Department of Environment, Food and Rural Affairs, 2013. a

Aven, T.: The risk concept–historical and recent development trends, Reliab. Eng. Syst. Safe., 99, 33–44, https://doi.org/10.1016/j.ress.2011.11.006, 2012. a

Ayyub, B. M.: Elicitation of expert opinions for uncertainty and risks, CRC Press, Boca Raton, Florida, 2001. a

Bahls, V. and Holman, K.: Climate Change in Hydrologic Hazard Analyses: Friant Dam Pilot Study - Part I: Hydrometeorological Model Inputs, Tech. rep., U.S. Department of the Interior, Bureau of Reclamation, 2014. a, b

Barredo, J. I.: Normalised flood losses in Europe: 1970–2006, Nat. Hazards Earth Syst. Sci., 9, 97-104, https://doi.org/10.5194/nhess-9-97-2009, 2009. a

Bates, B., Kundzewicz, Z., Wu, S., and Palutikof, J. (Eds.): Climate change and water, Technical Paper of the Intergovernmental Panel on Climate Change, Geneva, ipcc secretariat edn., 2008. a

Bladé, E., Cea, L., Corestein, G., Escolano, E., Puertas, J., Vázquez-Cendón, E., Dolz, J., and Coll, A.: Iber: herramienta de simulación numérica del flujo en ríos, Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería, 30, 1–10, https://doi.org/10.1016/j.rimni.2012.07.004, 2014. a

Bornschein, A. and Pohl, R.: Land use influence on flood routing and retention from the viewpoint of hydromechanics: Land use influence on flood routing and retention, J. Flood Risk Manag., 11, 6–14, https://doi.org/10.1111/jfr3.12289, 2018. a

Bouwer, L. M.: Have Disaster Losses Increased Due to Anthropogenic Climate Change?, B. Am. Meteorol. Soc., 92, 39–46, https://doi.org/10.1175/2010BAMS3092.1, 2011. a

Bouwer, L. M., Bubeck, P., and Aerts, J. C.: Changes in future flood risk due to climate and development in a Dutch polder area, Global Environ. Change, 20, 463–471, https://doi.org/10.1016/j.gloenvcha.2010.04.002, 2010. a

Bowles, D.: Advances in the practice and use of portfolio risk assessment, in: ANCOLD Conference on Dams, 2000. a

Bowles, D., Brown, A., Hughes, A., Morris, M., Sayers, P., Topple, A., Wallis, M., and Gardiner, K.: Guide to risk assessment for reservoir safety management, Volume 1: Guide, Tech. Rep. SC090001/R1, Environment Agency, Horison House, Deanery Road, Bristol, BS1 9AH, 2013a. a, b

Bowles, D., Brown, A., Hughes, A., Morris, M., Sayers, P., Topple, A., Wallis, M., and Gardiner, K.: Guide to risk assessment for reservoir safety management, Volume 2: Methodology and supporting information, Tech. Rep. SC090001/R2, Environment Agency, Horison House, Deanery Road, Bristol, BS1 9AH, 2013b. a

Braud, I., Vich, A., Zuluaga, J., Fornero, L., and Pedrani, A.: Vegetation influence on runoff and sediment yield in the Andes region: observation and modelling, J. Hydrol., 254, 124–144, https://doi.org/10.1016/S0022-1694(01)00500-5, 2001. a

Briaud, J.-L.: Case Histories in Soil and Rock Erosion: Woodrow Wilson Bridge, Brazos River Meander, Normandy Cliffs, and New Orleans Levees, J. Geotech. Geoenviron., 134, 1425–1447, https://doi.org/10.1061/(ASCE)1090-0241(2008)134:10(1425), 2008. a

British Columbia, Water Management Branch, British Columbia, and Dam Safety Unit: Inspection & maintenance of dams: dam safety guidelines, British Columbia, Water Management Branch, Victoria, 1998. a

Cardona, O., van Aalst, M., Birkmann, J., Fordham, M., McGregor, G., Perez, R., Pulwarty, R., Schipper, E., and Sinh, B.: Determinants of risk: exposure and vulnerability, in: Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation, edited by: Field, C., Barros, V., Stocker, T., Qin, D., Dokken, D., Ebi, K., Mastrandrea, M., Mach, K., Plattner, G.-K., Allen, S., Tignor, M., and Midgley, P., A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change (IPCC), Cambridge University Press, Cambridge, UK, New York, NY, USA, 65–108, 2012. a

Carrivick, J. L.: Dam break – Outburst flood propagation and transient hydraulics: A geosciences perspective, J. Hydrol., 380, 338–355, https://doi.org/10.1016/j.jhydrol.2009.11.009, 2010. a

CH2014-Impacts: Toward quantitative scenarios of climate change impacts in Switzerland, OCCR, FOEN, MeteoSwiss, C2SM, Agroscope and ProClim, Bern, Switzerland, 2014. a

Chaney, N. W., Herman, J. D., Reed, P. M., and Wood, E. F.: Flood and drought hydrologic monitoring: the role of model parameter uncertainty, Hydrol. Earth Syst. Sci., 19, 3239–3251, https://doi.org/10.5194/hess-19-3239-2015, 2015. a

Changnon, S. A., Pielke, R. A., Changnon, D., Sylves, R. T., and Pulwarty, R.: Human Factors Explain the Increased Losses from Weather and Climate Extremes, B. Am. Meteorol. Soc., 81, 437–442, https://doi.org/10.1175/1520-0477(2000)081<0437:HFETIL>2.3.CO;2, 2000. a

Chernet, H. H., Alfredsen, K., and Midttømme, G. H.: Safety of Hydropower Dams in a Changing Climate, J. Hydrol. Eng., 19, 569–582, https://doi.org/10.1061/(ASCE)HE.1943-5584.0000836, 2014. a, b, c

Choi, O. and Fischer, A.: The Impacts of Socioeconomic Development and Climate Change on Severe Weather Catastrophe Losses: Mid-Atlantic Region (MAR) And the U.S., Clim. Change, 58, 149–170, https://doi.org/10.1023/A:1023459216609, 2003. a

Commonwealth of Australia: National Climate Resilience and Adaptation Strategy, Tech. rep., 2015. a

Crompton, R. P. and McAneney, K. J.: Normalised Australian insured losses from meteorological hazards: 1967–2006, Environ. Sci. Policy, 11, 371–378, https://doi.org/10.1016/j.envsci.2008.01.005, 2008. a

Damiano, E. and Mercogliano, P.: Potential Effects of Climate Change on Slope Stability in Unsaturated Pyroclastic Soils, in: Landslide Science and Practice, edited by: Margottini, C., Canuti, P., and Sassa, K., Springer Berlin Heidelberg, Berlin, Heidelberg, 15–25, https://doi.org/10.1007/978-3-642-31337-0_2, 2013. a

Dankers, R. and Feyen, L.: Climate change impact on flood hazard in Europe: An assessment based on high-resolution climate simulations, J. Geophys. Res., 113, D19105, https://doi.org/10.1029/2007JD009719, 2008. a, b

De Roo, A., Odijk, M., Schmuck, G., Koster, E., and Lucieer, A.: Assessing the effects of land use changes on floods in the meuse and oder catchment, Phys. Chem. Earth Pt. B, 26, 593–599, https://doi.org/10.1016/S1464-1909(01)00054-5, 2001. a

Dehn, M., Bürger, G., Buma, J., and Gasparetto, P.: Impact of climate change on slope stability using expanded downscaling, Eng. Geol., 55, 193–204, https://doi.org/10.1016/S0013-7952(99)00123-4, 2000. a

DHI: MIKE FLOOD User Manual, Tech. rep., Danish Hydraulic Institute – Water and Environment, Hørsholm, Denmark, 2014. a

Dixon, K. W., Lanzante, J. R., Nath, M. J., Hayhoe, K., Stoner, A., Radhakrishnan, A., Balaji, V., and Gaitán, C. F.: Evaluating the stationarity assumption in statistically downscaled climate projections: is past performance an indicator of future results?, Clim. Change, 135, 395–408, https://doi.org/10.1007/s10584-016-1598-0, 2016. a

Dobler, C., Bürger, G., and Stötter, J.: Simulating future precipitation extremes in a complex Alpine catchment, Nat. Hazards Earth Syst. Sci., 13, 263–277, https://doi.org/10.5194/nhess-13-263-2013, 2013. a, b

Duan, J. G., Bai, Y., Dominguez, F., Rivera, E., and Meixner, T.: Framework for incorporating climate change on flood magnitude and frequency analysis in the upper Santa Cruz River, J. Hydrol., 549, 194–207, https://doi.org/10.1016/j.jhydrol.2017.03.042, 2017. a, b

Escuder-Bueno, I. and González-Pérez, J.: Metodología para la evaluación del riesgo hidrológico de presas y priorización de medidas correctoras, Colegio de Ingeniero de Caminos, Canales y Puertos, Madrid, Spain, 2014. a

Escuder-Bueno, I., Castillo-Rodriguez, J., Perales-Momparler, S., and Morales-Torres, A.: SUFRI methodology for pluvial and river flooding risk assessment in urban areas to inform decision-making, SUFRI project, WP3, final report, Tech. rep., available at: http://www.edams.upv.es/docs/2011_July_SUFRI_WP3_Final Report.pdf (last access: 13 September 2018), 2011. a

Escuder-Bueno, I., Castillo-Rodríguez, J. T., Zechner, S., Jöbstl, C., Perales-Momparler, S., and Petaccia, G.: A quantitative flood risk analysis methodology for urban areas with integration of social research data, Nat. Hazards Earth Syst. Sci., 12, 2843–2863, https://doi.org/10.5194/nhess-12-2843-2012, 2012. a

European Commission: An EU Strategy on adaptation to climate change, available at: http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52009DC0147&from=EN (last access: 13 September 2018), 2013. a

Evans, S. G. and Delaney, K. B.: Catastrophic Mass Flows in the Mountain Glacial Environment, in: Snow and Ice-Related Hazards, Risks and Disasters, Elsevier, 563–606, https://doi.org/10.1016/B978-0-12-394849-6.00016-0, 2015. a

Fassnacht, S. R. and Records, R. M.: Large snowmelt versus rainfall events in the mountains: Big Mountain Snowmelt vs Rainfall Events, J. Geophys. Res.-Atmos., 120, 2375–2381, https://doi.org/10.1002/2014JD022753, 2015. a

FEMA: Federal Guidelines for Dam Safety Risk Management, FEMA P-1025, Federal Emergency Management Agency, 2015. a

FERC: Arch Dams, in: Engineering Guidelines for the Evaluation of Hydropower Projects, Federal Energy Regulatory Commission, Division of Dam Safety and Inspections, Washington, DC, 1999. a

FERC: Engineering Guidelines for the Evaluation of Hydropower Projects, in: Dam Safety Performance Monitoring Program, Federal Energy Regulatory Commission, 2005. a

Feyen, L., Barredo, J., and Dankers, R.: Implications of global warming and urban land use change on flooding in Europe, in: Water and Urban Development Paradigms: Towards an Integration of Engineering, Design and Management Approaches, CRC Press, Boca Raton, Florida, 217–225, 2008. a

Fischer, G., Tubiello, F. N., van Velthuizen, H., and Wiberg, D. A.: Climate change impacts on irrigation water requirements: Effects of mitigation, 1990–2080, Technol. Forecast. Soc., 74, 1083–1107, https://doi.org/10.1016/j.techfore.2006.05.021, 2007. a

García-Kabbabe, L., Chaparro-Carrasquel, L., Escuder-Bueno, I., and Serrano-Lombillo, A.: Metodología para estructurar modos de fallo en sistemas presa-embalse, Valladolid, Spain, 2010. a

Gilroy, K. L. and McCuen, R. H.: A nonstationary flood frequency analysis method to adjust for future climate change and urbanization, J. Hydrol., 414–415, 40–48, https://doi.org/10.1016/j.jhydrol.2011.10.009, 2012. a

Girón, F.: The evacuation of floods during the operation of reservoir, in: 16th ICOLD Congress, International Commission on large dams (ICOLD), San Francisco, USA, 1988. a

Hall, J.: Quantified scenarios analysis of drivers and impacts of changing flood risk in England and Wales: 2030–2100, Global Environ. Change, 5, 51–65, https://doi.org/10.1016/j.hazards.2004.04.002, 2003. a

Handmer, J., Honda, Y., Kundzewicz, Z., Arnell, N., Benito, G., Hatfield, J., Mohamed, I., Peduzzi, P., Wu, S., Sherstyukov, B., Takahashi, K., and Yan, Z.: Changes in impacts of climate extremes: human systems and ecosystems, in: Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation, edited by: Field, C., Barros, V., Stocker, T., Qin, D., Dokken, D., Ebi, K., Mastrandrea, M., Mach, K., Plattner, G.-K., Allen, S., Tignor, M., and Midgley, P., A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change (IPCC), Cambridge University Press, Cambridge, UK, New York, NY, USA, 231–290, 2012. a

Hannaford, J. and Marsh, T. J.: High–flow and flood trends in a network of undisturbed catchments in the UK, Int. J. Climatol., 28, 1325–1338, https://doi.org/10.1002/joc.1643, 2008. a

Hilker, N., Badoux, A., and Hegg, C.: The Swiss flood and landslide damage database 1972–2007, Nat. Hazards Earth Syst. Sci., 9, 913–925, https://doi.org/10.5194/nhess-9-913-2009, 2009. a

Hirabayashi, Y., Mahendran, R., Koirala, S., Konoshima, L., Yamazaki, D., Watanabe, S., Kim, H., and Kanae, S.: Global flood risk under climate change, Nat. Clim. Change, 3, 816–821, https://doi.org/10.1038/nclimate1911, 2013. a, b

Huggel, C., Caplan-Auerbach, J., and Wessels, R.: Recent Extreme Avalanches: Triggered by Climate Change?, Eos T. Am. Geophys. Un., 89, 469–470, https://doi.org/10.1029/2008EO470001, 2008. a

Huss, M.: Present and future contribution of glacier storage change to runoff from macroscale drainage basins in Europe, Water Resour. Res., 47, W07511, https://doi.org/10.1029/2010WR010299, 2011. a

Huss, M., Jouvet, G., Farinotti, D., and Bauder, A.: Future high-mountain hydrology: a new parameterization of glacier retreat, Hydrol. Earth Syst. Sci., 14, 815-829, https://doi.org/10.5194/hess-14-815-2010, 2010. a

Hutton, G., Haller, L., and Bartram, J.: Global cost-benefit analysis of water supply and sanitation interventions, J. Water Health, 5, 481–502, https://doi.org/10.2166/wh.2007.009, 2007. a

ICOLD: Bulletin on risk assessment in dam safety management, Tech. rep., International Commission on Large Dams, 2003. a

ICOLD: Risk assessment in dam safety management, A reconnaissance of benefits, methods and current applications, Bulletin 130, International Commission on Large Dams, 2005. a

IPCC: Glossary of terms, in: Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation, edited by: Field, C., Barros, V., Stocker, T., Qin, D., Dokken, D., Ebi, K., Mastrandrea, M., Mach, K., Plattner, G.-K., Allen, S., Tignor, M., and Midgley, P., A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change (IPCC), Cambridge University Press, Cambridge, UK, New York, NY, USA, 555–564, 2012a. a

IPCC: Managing the risks of extreme events and disasters to advance climate change adaptation: special report of the Intergovernmental Panel on Climate Change, Cambridge Univ. Press, Cambridge, UK, New York, NY, USA, 1st publ. edn., 2012b. a, b

IPCC: Climate Change 2013: The Physical Science Basis, Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, UK, New York, NY, USA, 2013. a

IPCC: Climate Change 2014: Impacts, Adaptation, and Vulnerability, Part A: Global and Sectoral Aspects, Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge Univ. Press, Cambridge, UK, New York, NY, USA, 2014. a, b, c

James, L. and Lee, R.: Economics of water resources planning, McGraw-Hill series in water resources and environmental engineering, McGraw-Hill Book Co., 615 pp., 1970. a

Järvelä, J.: Flow resistance of flexible and stiff vegetation: a flume study with natural plants, J. Hydrol., 269, 44–54, https://doi.org/10.1016/S0022-1694(02)00193-2, 2002. a

Kaplan, S.: The Words of Risk Analysis, Risk Anal., 17, 407–417, https://doi.org/10.1111/j.1539-6924.1997.tb00881.x, 1997. a

Kaplan, S. and Garrick, B. J.: On The Quantitative Definition of Risk, Risk Anal., 1, 11–27, https://doi.org/10.1111/j.1539-6924.1981.tb01350.x, 1981. a

Kay, A. L., Reynard, N. S., and Jones, R. G.: RCM rainfall for UK flood frequency estimation. I. Method and validation, J. Hydrol., 318, 151–162, https://doi.org/10.1016/j.jhydrol.2005.06.012, 2006. a

Kazem, M., McPhee, D., Torkaman Rashid, A., and Kazem, A.: Climate change and economic approaches into water allocation: optimization via direct benefits of water – the case study of Rudbar Lorestan hydropower dam (Iran), Sustain. Water Resour. Manage., 2, 461–472, https://doi.org/10.1007/s40899-016-0067-2, 2016. a

Khaliq, M., Ouarda, T., Ondo, J.-C., Gachon, P., and Bobée, B.: Frequency analysis of a sequence of dependent and/or non-stationary hydro-meteorological observations: A review, J. Hydrol., 329, 534–552, https://doi.org/10.1016/j.jhydrol.2006.03.004, 2006. a

Khazaei, M. R., Zahabiyoun, B., and Saghafian, B.: Assessment of climate change impact on floods using weather generator and continuous rainfall-runoff model, Int. J. Climatol., 32, 1997–2006, https://doi.org/10.1002/joc.2416, 2012. a

Kingston, D. G., Todd, M. C., Taylor, R. G., Thompson, J. R., and Arnell, N. W.: Uncertainty in the estimation of potential evapotranspiration under climate change, Geophys. Res. Lett., 36, L20403, https://doi.org/10.1029/2009GL040267, 2009. a

Kjeldsen, T., Macdonald, N., Lang, M., Mediero, L., Albuquerque, T., Bogdanowicz, E., Brázdil, R., Castellarin, A., David, V., Fleig, A., Gül, G., Kriauciuniene, J., Kohnová, S., Merz, B., Nicholson, O., Roald, L., Salinas, J., Sarauskiene, D., Šraj, M., Strupczewski, W., Szolgay, J., Toumazis, A., Vanneuville, W., Veijalainen, N., and Wilson, D.: Documentary evidence of past floods in Europe and their utility in flood frequency estimation, J. Hydrol., 517, 963–973, https://doi.org/10.1016/j.jhydrol.2014.06.038, 2014. a

Klipsch, J. and Hurst, M.: HEC-ResSim Reservoir System Simulation User's Manual, Tech. rep., USACE, Institute for Water Resources, Hydrologic Engineering Center, Davis, CA, 2007. a

Knutti, R., Furrer, R., Tebaldi, C., Cermak, J., and Meehl, G. A.: Challenges in Combining Projections from Multiple Climate Models, J. Climate, 23, 2739–2758, https://doi.org/10.1175/2009JCLI3361.1, 2010. a

Kondolf, G. M., Gao, Y., Annandale, G. W., Morris, G. L., Jiang, E., Zhang, J., Cao, Y., Carling, P., Fu, K., Guo, Q., Hotchkiss, R., Peteuil, C., Sumi, T., Wang, H.-W., Wang, Z., Wei, Z., Wu, B., Wu, C., and Yang, C. T.: Sustainable sediment management in reservoirs and regulated rivers: Experiences from five continents, Earth's Future, 2, 256–280, https://doi.org/10.1002/2013EF000184, 2014. a

Kundzewicz, Z., Mata, L., Arnell, N., Doll, P., Kabat, P., Jimenez, B., Miller, K., Oki, T., Sen, Z., and Shiklomanov, I.: Freshwater resources and their management, in: Climate Change 2007, Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Parry, M., Canziani, O., Palutikof, J., Van Der Linde, P., and Hanson, C., Cambridge, UK, Cambridge University Press edition, 173–210, 2007. a

Lanzante, J. R., Dixon, K. W., Nath, M. J., Whitlock, C. E., and Adams-Smith, D.: Some Pitfalls in Statistical Downscaling of Future Climate, B. Am. Meteorol. Soc., 99, 791–803, https://doi.org/10.1175/BAMS-D-17-0046.1, 2018. a

Lawrence, D., Paquet, E., Gailhard, J., and Fleig, A. K.: Stochastic semi-continuous simulation for extreme flood estimation in catchments with combined rainfall–snowmelt flood regimes, Nat. Hazards Earth Syst. Sci., 14, 1283–1298, https://doi.org/10.5194/nhess-14-1283-2014, 2014. a

Lewin, J., Ballard, G., and Bowles, D.: Spillway gate reliability in the context of overall dam failure risk, in: USSD Annual Lecture, Charleston, South Carolina, 2003. a, b

Liu, Y.-J., Wang, T.-W., Cai, C.-F., Li, Z.-X., and Cheng, D.-B.: Effects of vegetation on runoff generation, sediment yield and soil shear strength on road-side slopes under a simulation rainfall test in the Three Gorges Reservoir Area, China, Sci. Total Environ., 485–486, 93–102, https://doi.org/10.1016/j.scitotenv.2014.03.053, 2014. a

López, J. and Francés, F.: Non-stationary flood frequency analysis in continental Spanish rivers, using climate and reservoir indices as external covariates, Hydrol. Earth Syst. Sci., 17, 3189–3203, https://doi.org/10.5194/hess-17-3189-2013, 2013. a

Maaskant, B., Jonkman, S. N., and Bouwer, L. M.: Future risk of flooding: an analysis of changes in potential loss of life in South Holland (The Netherlands), Environ. Sci. Policy, 12, 157–169, https://doi.org/10.1016/j.envsci.2008.11.004, 2009. a

Malm, R.: Guidelines for FE Analyses of Concrete Dams, Tech. rep., ENERGIFORSK, 2016. a

Mechler, R. and Kundzewicz, Z. W.: Assessing adaptation to extreme weather events in Europe–Editorial, Mitig. Adapt. Strat. Gl., 15, 611–620, https://doi.org/10.1007/s11027-010-9245-y, 2010. a

Merz, B., Kreibich, H., Thieken, A., and Schmidtke, R.: Estimation uncertainty of direct monetary flood damage to buildings, Nat. Hazards Earth Syst. Sci., 4, 153–163, https://doi.org/10.5194/nhess-4-153-2004, 2004. a

Merz, B., Hall, J., Disse, M., and Schumann, A.: Fluvial flood risk management in a changing world, Nat. Hazards Earth Syst. Sci., 10, 509–527, https://doi.org/10.5194/nhess-10-509-2010, 2010. a

Miller, S., Muir-Wood, R., and Boisonnade, A.: An exploration of trends in normalised weather-related catastrophe losses, in: Climate Extremes and Society, edited by: Diaz, H. and Murnane, R., Cambridge University Press, Cambridge, UK, 225–247, 2008. a

Morison, J. I. L. and Morecroft, M. D. (Eds.): Plant growth and climate change, Biological sciences series, Blackwell Publishing, Oxford, 232 pp., 2007. a

Mostbauer, K., Kaitna, R., Prenner, D., and Hrachowitz, M.: The temporally varying roles of rainfall, snowmelt and soil moisture for debris flow initiation in a snow-dominated system, Hydrol. Earth Syst. Sci., 22, 3493–3513, https://doi.org/10.5194/hess-22-3493-2018, 2018. a

National Research Council: Informing decisions in a changing climate, National Academies Press, Washington, DC, https://doi.org/10.17226/12626, 2009. a

Neumayer, E. and Barthel, F.: Normalizing economic loss from natural disasters: A global analysis, Global Environ. Change, 21, 13–24, https://doi.org/10.1016/j.gloenvcha.2010.10.004, 2011. a

Novembre, N., Holman, K., and Bahls, V.: Climate Change in Hydrologic Hazard Analyses: Friant Dam Pilot Study – Part II: Using the SEFM with Climate-Adjusted Hydrometeorological Inputs, Technical Memorandum 8250-2015-010, U.S. Department of the Interior, Bureau of Reclamation, 2015. a

OECC: Plan Nacional de Adaptación al Cambio Climático, Tech. rep., Oficina Española de Cambio Climático, Ministerio de Agricultura y Pesca, Alimentación y Medio Ambiente, available at: https://www.mapama.gob.es/es/cambio-climatico/temas/impactos-vulnerabilidad-y-adaptacion/pna_v3_tcm7-12445_tcm30-70393.pdf (last access: 13 September 2018), 2008. a

OECD: GDP long-term forecast (indicator), available at: https://data.oecd.org/gdp/gdp-long-term-forecast.htm (last access: 13 September 2018), 2018. a

OFEV (Ed.): Adaptation aux changements climatiques en Suisse, Plan d'action 2014–2019, Deuxième volet de la stratégie du Conseil fédéral du 9 avril 2014, Bern, Switzerland, 2014. a

Our World in Data: Future Population Growth, available at: https://ourworldindata.org/future-population-growth (last access: 13 September 2018), 2018. a

Paxson, G., McCann, M., and Landis, M.: A Risk Based Framework for Evaluating Gated Spillway Operations, in: 6th International Symposium on Hydraulic Structures, USU Libraries, Portland, Oregon, USA, 630–640, https://doi.org/10.15142/T3730628160853, 2016. a

Peduzzi, P., Dao, H., Herold, C., and Mouton, F.: Assessing global exposure and vulnerability towards natural hazards: the Disaster Risk Index, Nat. Hazards Earth Syst. Sci., 9, 1149–1159, https://doi.org/10.5194/nhess-9-1149-2009, 2009. a

Pereira-Cardenal, S. J., Madsen, H., Arnbjerg-Nielsen, K., Riegels, N., Jensen, R., Mo, B., Wangensteen, I., and Bauer-Gottwein, P.: Assessing climate change impacts on the Iberian power system using a coupled water-power model, Clim. Change, 126, 351–364, https://doi.org/10.1007/s10584-014-1221-1, 2014. a

Petrow, T. and Merz, B.: Trends in flood magnitude, frequency and seasonality in Germany in the period 1951–2002, J. Hydrol., 371, 129–141, https://doi.org/10.1016/j.jhydrol.2009.03.024, 2009. a

Peñuelas, J., Gordon, C., Llorens, L., Nielsen, T., Tietema, A., Beier, C., Bruna, P., Emmett, B., Estiarte, M., and Gorissen, A.: Nonintrusive Field Experiments Show Different Plant Responses to Warming and Drought Among Sites, Seasons, and Species in a North–South European Gradient, Ecosystems, 7, 598–612, https://doi.org/10.1007/s10021-004-0179-7, 2004. a

Pielke Jr., R. A.: Future economic damage from tropical cyclones: sensitivities to societal and climate changes, Philos. T. Roy. Soc. A, 365, 2717–2729, https://doi.org/10.1098/rsta.2007.2086, 2007. a

Pielke Jr., R. A. and Downton, M. W.: Precipitation and Damaging Floods: Trends in the United States, 1932–97, J. Climate, 13, 3625–3637, https://doi.org/10.1175/1520-0442(2000)013<3625:PADFTI>2.0.CO;2, 2000. a

Pielke Jr., R. A., Agrawala, S., Bouwer, L. M., Burton, I., Changnon, S., Glantz, M. H., Hooke, W. H., Klein, R. J. T., Kunkel, K., Mileti, D., Sarewitz, D., Thompkins, E. L., Stehr, N., and von Storch, H.: Clarifying the Attribution of Recent Disaster Losses: A Response to Epstein and McCarthy, B. Am. Meteorol. Soc., 86, 1481–1483, https://doi.org/10.1175/BAMS-86-10-1481, 2005. a

Prudhomme, C. and Davies, H.: Assessing uncertainties in climate change impact analyses on the river flow regimes in the UK. Part 2: future climate, Clim. Change, 93, 197–222, https://doi.org/10.1007/s10584-008-9461-6, 2009. a

Quiroga, S., Garrote, L., Iglesias, A., Fernández-Haddad, Z., Schlickenrieder, J., de Lama, B., Mosso, C., and Sánchez-Arcilla, A.: The economic value of drought information for water management under climate change: a case study in the Ebro basin, Nat. Hazards Earth Syst. Sci., 11, 643–657, https://doi.org/10.5194/nhess-11-643-2011, 2011. a

Raff, D. A., Pruitt, T., and Brekke, L. D.: A framework for assessing flood frequency based on climate projection information, Hydrol. Earth Syst. Sci., 13, 2119–2136, https://doi.org/10.5194/hess-13-2119-2009, 2009. a, b

Requena, A. I., Mediero, L., and Garrote, L.: A bivariate return period based on copulas for hydrologic dam design: accounting for reservoir routing in risk estimation, Hydrol. Earth Syst. Sci., 17, 3023–3038, https://doi.org/10.5194/hess-17-3023-2013, 2013. a

Riahi, K., van Vuuren, D. P., Kriegler, E., Edmonds, J., O'Neill, B. C., Fujimori, S., Bauer, N., Calvin, K., Dellink, R., Fricko, O., Lutz, W., Popp, A., Cuaresma, J. C., Kc, S., Leimbach, M., Jiang, L., Kram, T., Rao, S., Emmerling, J., Ebi, K., Hasegawa, T., Havlik, P., Humpenöder, F., Da Silva, L. A., Smith, S.,<span id="page2487"/> Stehfest, E., Bosetti, V., Eom, J., Gernaat, D., Masui, T., Rogelj, J., Strefler, J., Drouet, L., Krey, V., Luderer, G., Harmsen, M., Takahashi, K., Baumstark, L., Doelman, J. C., Kainuma, M., Klimont, Z., Marangoni, G., Lotze-Campen, H., Obersteiner, M., Tabeau, A., and Tavoni, M.: The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview, Global Environ. Change, 42, 153–168, https://doi.org/10.1016/j.gloenvcha.2016.05.009, 2017. a

Rodríguez Díaz, J. A., Weatherhead, E. K., Knox, J. W., and Camacho, E.: Climate change impacts on irrigation water requirements in the Guadalquivir river basin in Spain, Reg. Environ. Change, 7, 149–159, https://doi.org/10.1007/s10113-007-0035-3, 2007. a

Sarr, M., Seidou, O., Tramblay, Y., and El Adlouni, S.: Comparison of downscaling methods for mean and extreme precipitation in Senegal, J. Hydrol., 4, 369–385, https://doi.org/10.1016/j.ejrh.2015.06.005, 2015. a, b

Schmidt, S., Kemfert, C., and Faust, E.: Simulation of Economic Losses from Tropical Cyclones in the Years 2015 and 2050: The Effects of Anthropogenic Climate Change and Growing Wealth, Discussion paper 914, German Institute for Economic Research, Berlin, Germany, 2009. a

Schneider, D., Huggel, C., Haeberli, W., and Kaitna, R.: Unraveling driving factors for large rock-ice avalanche mobility: UNRAVELING DRIVING FACTORS FOR LARGE ROCK-ICE AVALANCHE MOBILITY, Earth Surf. Proc. Land., 36, 1948–1966, https://doi.org/10.1002/esp.2218, 2011. a

Schotten, K., Goetgeluk, R., Hilferink, M., Rietveld, P., and Scholten, H.: Residential Construction, Land Use and the Environment. Simulations for the Netherlands Using a GIS-Based Land Use Model, Environ. Model. Assess., 6, 133–143, https://doi.org/10.1023/A:1011531120436, 2001. a

Seneviratne, S. I., Corti, T., Davin, E. L., Hirschi, M., Jaeger, E. B., Lehner, I., Orlowsky, B., and Teuling, A. J.: Investigating soil moisture–climate interactions in a changing climate: A review, Earth-Sci. Rev., 99, 125–161, https://doi.org/10.1016/j.earscirev.2010.02.004, 2010. a

Serinaldi, F. and Grimaldi, S.: Fully Nested 3-Copula: Procedure and Application on Hydrological Data, J. Hydrol. Eng., 12, 420–430, https://doi.org/10.1061/(ASCE)1084-0699(2007)12:4(420), 2007. a

Serrano-Lombillo, A., Escuder-Bueno, I., de Membrillera-Ortuño, M. G., and Altarejos-García, L.: Methodology for the Calculation of Annualized Incremental Risks in Systems of Dams: Risk Calculation for Systems of Dams, Risk Anal., 31, 1000–1015, https://doi.org/10.1111/j.1539-6924.2010.01547.x, 2011. a

Serrano-Lombillo, A., Escuder-Bueno, I., and Altarejos-García, L.: Use of risk models for evaluation of risk reduction measures for dams, Commission Internationale des Grands Barrages, Kyoto, 2012. a

Serrano-Lombillo, A., Morales-Torres, A., Escuder-Bueno, I., and Altarejos-García, L.: Review, Analysis and Application of Existing Risk Reduction Principles and Risk Indicators for Dam Safety Management, 2013. a

Shamir, E., Megdal, S. B., Carrillo, C., Castro, C. L., Chang, H.-I., Chief, K., Corkhill, F. E., Eden, S., Georgakakos, K. P., Nelson, K. M., and Prietto, J.: Climate change and water resources management in the Upper Santa Cruz River, Arizona, J. Hydrol., 521, 18–33, https://doi.org/10.1016/j.jhydrol.2014.11.062, 2015. a

Solaun, K. and Cerdá, E.: The Impact of Climate Change on the Generation of Hydroelectric Power–A Case Study in Southern Spain, Energies, 10, 1343, https://doi.org/10.3390/en10091343, 2017. a

SPANCOLD: Risk Analysis as Applied to Dam Safety, Technical Guide on Operation of Dams and Reservoirs, Professional Association of Civil Engineers, Spanish National Committe on Large Dams, Madrid, available at: http://www.spancold.es/Archivos/Monograph_Risk_Analysis.pdf (last access: 13 September 2018), 2012. a, b, c, d, e, f, g

Šraj, M., Viglione, A., Parajka, J., and Blöschl, G.: The influence of non-stationarity in extreme hydrological events on flood frequency estimation, J. Hydrol. Hydromech., 64, 426–437, https://doi.org/10.1515/johh-2016-0032, 2016. a

Stamatelatos, M., Vesely, W., Dugan, J., Fragola, J., Minarick, J., and Railsback, J.: Fault tree handbook with aerospace applications, Tech. rep., NASA Office of Safety and Mission Assurance, 2002. a

Stoffel, M. and Huggel, C.: Effects of climate change on mass movements in mountain environments, Prog. Phys. Geog., 36, 421–439, https://doi.org/10.1177/0309133312441010, 2012. a

Sunyer, M., Madsen, H., and Ang, P.: A comparison of different regional climate models and statistical downscaling methods for extreme rainfall estimation under climate change, Atmos. Res., 103, 119–128, https://doi.org/10.1016/j.atmosres.2011.06.011, 2012. a

Swiss Re: Natural catastrophes and man-made disasters in 2015: Asia suffers substantial losses, Tech. Rep. 1/2016, Swiss Reinsurance Company, Zurich, Switzerland, 2016. a

Taye, M. T., Ntegeka, V., Ogiramoi, N. P., and Willems, P.: Assessment of climate change impact on hydrological extremes in two source regions of the Nile River Basin, Hydrol. Earth Syst. Sci., 15, 209–222, https://doi.org/10.5194/hess-15-209-2011, 2011. a

UK Climate Impacts Programme: Socio-economic scenarios for climate change impact assessment: a guide to their use in the UK Climate Impacts Programme, Tech. rep., UKCIP, Oxford, 2000. a

UNISDR: Global Assessment Report on Disaster Risk Reduction, United Nations International Strategy for Disaster Reduction Secretariat, Geneva, Switzerland, green ink, UK edition, 2009. a

United Nations: World Population Prospects: The 2017 Revision, Tech. rep., Department of Economic and Social Affairs, Population Division, available at: https://esa.un.org/unpd/wpp/Download/Standard/Population/ (last access: 13 September 2018), 2017. a

U.S. Department of Energy: Effects of Climate Change on Federal Hydropower, Tech. Rep. 20585, Washington, DC, 2013. a

U.S. Department of Homeland Security: Dam Sector, Estimating Economic Consequences for Dam Failure Scenarios, Tech. rep., 2011. a

U.S. Government Accountability Office: Climate Change, Federal Efforts Under Way to Assess Water Infrastructure Vulnerabilities and Address Adaptation Challenges, Tech. Rep. GAO-14-23, 2013. a

USACE: HEC-GeoRAS, GIS Tools for Support of HEC-RAS using ArcGIS, User's Manual, United States Army Corps of Engineers, Computer Program Documentation, Davis, CA, 2011a. a

USACE: Safety of dams – Policy and procedures, Tech. Rep. ER 1110-2- 1156, United States Army Corps of Engineers, Washington, DC, 2011b. a

USACE: Climate Change Adaptation Plan, Tech. rep., United States Army Corps of Engineers, Committee on Climate Preparedness and Resilience, 2014. a

USACE: Guidance for Incorporating Climate Change Impacts to Inland Hydrology in Civil Works Studies, Designs, and Projects, United States Army Corps of Engineers, EBC 2016-25, 2016. a

USBR: Hydrology, hydraulics, and sediment studies for the Matilija Dam Ecosystem Restoration Project,United States Bureau of Reclamation, Ventura, CA – DRAFT Report, Tech. rep., Denver, CO, 2006. a

USBR: Climate Change Adaptation Strategy, Tech. rep., U.S. Department of the Interior, United States Bureau of Reclamation, 2014. a, b

USBR: Climate Change Adaptation Strategy: 2016 Progress Report, Tech. rep., U.S. Department of the Interior, United States Bureau of Reclamation, 2016. a

Villarini, G., Serinaldi, F., Smith, J. A., and Krajewski, W. F.: On the stationarity of annual flood peaks in the continental United States during the 20th century, Water Resour. Res., 45, W08417, https://doi.org/10.1029/2008WR007645, 2009. a

Walsh, J., Wuebbles, D., Hayhoe, K., Kossin, J., Kunkel, K., Stephens, G., Thorne, P., Vose, R., Wehner, M., Willis, J., Anderson, D., Doney, S., Feely, R., Hennon, P., Kharin, V., Knutson, T., Landerer, F., Lenton, T., Kennedy, J., and Somerville, R.: Our Changing Climate, chap. 2, in: Climate Change Impacts in the United States: The Third National Climate Assessment, edited by: Melillo, J. M., Richmond, T., and Yohe, G. W., U.S. Global Change Research Program, 19–67, https://doi.org/10.7930/J0KW5CXT, 2014. a

Wan, C. F. and Fell, R.: Investigation of Rate of Erosion of Soils in Embankment Dams, J. Geotech. Geoenviron., 130, 373–380, https://doi.org/10.1061/(ASCE)1090-0241(2004)130:4(373), 2004. a

Wilks, D. S.: Use of stochastic weathergenerators for precipitation downscaling: Use of stochastic precipitation generators, WIRES Clim. Change, 1, 898–907, https://doi.org/10.1002/wcc.85, 2010.  a

Willems, P. (Ed.): Impacts of climate change on rainfall extremes and urban drainage systems, IWA Publishing, London, ISBN: 9781780401256 , 2012. a

Willems, P.: Revision of urban drainage design rules after assessment of climate change impacts on precipitation extremes at Uccle, Belgium, J. Hydrol., 496, 166–177, https://doi.org/10.1016/j.jhydrol.2013.05.037, 2013. a

Wobus, C., Gutmann, E., Jones, R., Rissing, M., Mizukami, N., Lorie, M., Mahoney, H., Wood, A. W., Mills, D., and Martinich, J.: Climate change impacts on flood risk and asset damages within mapped 100-year floodplains of the contiguous United States, Nat. Hazards Earth Syst. Sci., 17, 2199–2211, https://doi.org/10.5194/nhess-17-2199-2017, 2017. a

World Meteorological Organization: Guide to hydrological practices, vol. II: Management of Water Resources and Application of Hydrological Practices, World Meteorological Organization, Geneva, 2008. a

Yang, D., Kanae, S., Oki, T., Koike, T., and Musiake, K.: Global potential soil erosion with reference to land use and climate changes, Hydrol. Process., 17, 2913–2928, https://doi.org/10.1002/hyp.1441, 2003. a

Zhang, L. and Singh, V. P.: Bivariate Flood Frequency Analysis Using the Copula Method, J. Hydrol. Eng., 11, 150–164, https://doi.org/10.1061/(ASCE)1084-0699(2006)11:2(150), 2006. a

Zhang, Q., Gu, X., Singh, V. P., Xiao, M., and Chen, X.: Evaluation of flood frequency under non-stationarity resulting from climate indices and reservoir indices in the East River basin, China, J. Hydrol., 527, 565–575, https://doi.org/10.1016/j.jhydrol.2015.05.029, 2015. a

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem