- -

Sparse N-way Partial Least Squares by L1-penalization

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Sparse N-way Partial Least Squares by L1-penalization

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Hervás-Marín, David es_ES
dc.contributor.author Prats-Montalbán, José Manuel es_ES
dc.contributor.author Garcia-Cañaveras, J.C. es_ES
dc.contributor.author Lahoz Rodríguez, Agustín Gerardo es_ES
dc.contributor.author Ferrer, Alberto es_ES
dc.date.accessioned 2019-05-23T20:02:27Z
dc.date.available 2019-05-23T20:02:27Z
dc.date.issued 2019 es_ES
dc.identifier.issn 0169-7439 es_ES
dc.identifier.uri http://hdl.handle.net/10251/121000
dc.description.abstract [EN] N-PLS, as the natural extension of PLS to N-way structures, tries to maximize the covariance between an X and a Y N-way data arrays. It provides a useful framework for fitting prediction models to N-way data. However, N-PLS by itself does not perform variable selection, which indeed can facilitate interpretation in different situations (e.g. the so-called ¿¿omics¿ data). In this work, we propose a method for variable selection within N-PLS by introducing sparsity in the weights matrices WJ and WK by means of L1-penalization. The sparse version of N-PLS is able to provide lower prediction errors by filtering all the noise variables and to further improve interpretability and usability of the N-PLS results. To test Sparse N-PLS performance two different simulated data sets were used, whereas to show its utility in a biological context a real time course metabolomics data set was used. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Chemometrics and Intelligent Laboratory Systems es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject N-PLS es_ES
dc.subject LASSO es_ES
dc.subject Variable selection es_ES
dc.subject Multiway models es_ES
dc.subject.classification ESTADISTICA E INVESTIGACION OPERATIVA es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title Sparse N-way Partial Least Squares by L1-penalization es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.chemolab.2019.01.004 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat es_ES
dc.description.bibliographicCitation Hervás-Marín, D.; Prats-Montalbán, JM.; Garcia-Cañaveras, J.; Lahoz Rodríguez, AG.; Ferrer, A. (2019). Sparse N-way Partial Least Squares by L1-penalization. Chemometrics and Intelligent Laboratory Systems. 185:85-91. https://doi.org/10.1016/j.chemolab.2019.01.004 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.org/10.1016/j.chemolab.2019.01.004 es_ES
dc.description.upvformatpinicio 85 es_ES
dc.description.upvformatpfin 91 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 185 es_ES
dc.relation.pasarela S\375922 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem