- -

Explicit expressions for the estimation of the elastic constants of lamellar bone as a function of the volumetric mineral content using a multi-scale approach

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Explicit expressions for the estimation of the elastic constants of lamellar bone as a function of the volumetric mineral content using a multi-scale approach

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Vercher Martínez, Ana es_ES
dc.contributor.author Giner Maravilla, Eugenio es_ES
dc.contributor.author Belda, R. es_ES
dc.contributor.author Aigoun, A. es_ES
dc.contributor.author Fuenmayor Fernández, Francisco-Javier es_ES
dc.date.accessioned 2019-05-23T20:02:46Z
dc.date.available 2019-05-23T20:02:46Z
dc.date.issued 2018 es_ES
dc.identifier.issn 1617-7959 es_ES
dc.identifier.uri http://hdl.handle.net/10251/121002
dc.description.abstract [EN] In this work, explicit expressions to estimate all the transversely isotropic elastic constants of lamellar bone as a function of the volumetric bone mineral density (BMD) are provided. The methodology presented is based on the direct homogenization procedure using the finite element method, the continuum approach based on the Hill bounds, the least-square method and the mean field technique. Firstly, a detailed description of the volumetric content of the different components of bone is provided. The parameters defined in this step are related to the volumetric BMD considering that bone mineralization process occurs at the smallest scale length of the bone tissue. Then, a thorough description provides the details of the numerical models and the assumptions adopted to estimate the elastic behaviour of the forward scale lengths. The results highlight the noticeable influence of the BMD on the elastic modulus of lamellar bone. Power law regressions fit the Young's moduli, shear stiffness moduli and Poisson ratios. In addition, the explicit expressions obtained are applied to the estimation of the elastic constants of cortical bone. At this scale length, a representative unit cell of cortical bone is analysed including the fibril orientation pattern given by Wagermaier et al. (Biointerphases 1:1-5, 2006) and the BMD distributions observed by Granke et al. (PLoS One 8:e58043, 2012) for the osteon. Results confirm that fibril orientation arrangement governs the anisotropic behaviour of cortical bone instead of the BMD distribution. The novel explicit expressions obtained in this work can be used for improving the accuracy of bone fracture risk assessment. es_ES
dc.description.sponsorship The authors acknowledge the Ministerio de Economia y Competitividad for the financial support received through the project DPI2013-46641-R and to the Generalitat Valenciana for Programme PROMETEO 2016/007. The authors declare that they have no conflict of interest es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Biomechanics and Modeling in Mechanobiology es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Lamellar bone es_ES
dc.subject Elastic constants es_ES
dc.subject Volumetric bone mineral density es_ES
dc.subject Multi-scale approach es_ES
dc.subject.classification INGENIERIA MECANICA es_ES
dc.title Explicit expressions for the estimation of the elastic constants of lamellar bone as a function of the volumetric mineral content using a multi-scale approach es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s10237-017-0971-x es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//DPI2013-46641-R/ES/DESARROLLO DE MODELOS MICROESTRUCTURALES DE TEJIDO OSEO Y APLICACION A PROCEDIMIENTOS DE EVALUACION DEL RIESGO DE FRACTURA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2016%2F007/ES/Modelado numérico avanzado en ingeniería mecánica/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials es_ES
dc.description.bibliographicCitation Vercher Martínez, A.; Giner Maravilla, E.; Belda, R.; Aigoun, A.; Fuenmayor Fernández, F. (2018). Explicit expressions for the estimation of the elastic constants of lamellar bone as a function of the volumetric mineral content using a multi-scale approach. Biomechanics and Modeling in Mechanobiology. 17(2):449-464. https://doi.org/10.1007/s10237-017-0971-x es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.org/10.1007/s10237-017-0971-x es_ES
dc.description.upvformatpinicio 449 es_ES
dc.description.upvformatpfin 464 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 17 es_ES
dc.description.issue 2 es_ES
dc.identifier.pmid 29105006
dc.relation.pasarela S\360489 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Ministerio de Economía, Industria y Competitividad es_ES
dc.description.references Akiva U, Wagner HD, Weiner S (1998) Modelling the three-dimensional elastic constants of parallel-fibred and lamellar bone. J Mater Sci 33:1497–1509 es_ES
dc.description.references Ascenzi A, Bonucci E (1967) The tensile properties of single osteons. Ana Rec 158:375–386 es_ES
dc.description.references Barbour KE, Zmuda JM, Strotmeyer ES, Horwitz MJ, Boudreau R, Evans RW, Ensrud K, Petit MA, Gordon CL, Cauley JA (2013) Correlates of trabecular and cortical volumetric bone mineral density of the radius and tibia older men: the osteoporotic fractures in men study. J Bone Miner Res 25(5):1017–1028 es_ES
dc.description.references Bar-On B, Wagner HD (2013) Structural motifs and elastic properties of hierarchical biological tissues—a review. J Struct Biol 183:149–164 es_ES
dc.description.references Cowin SC (2000) How is a tissue built? J Biomech Eng 122:553–569 es_ES
dc.description.references Cowin SC (2001) Bone mechanics handbook, 2nd edn. CRC Press, Boca Raton es_ES
dc.description.references Currey JD (1986) Power law models for the mechanical properties of cancellous bone. Eng Med 15(3):153–154 es_ES
dc.description.references Currey JD (1988) The effect of porosity and mineral content on the Young’s modulus of elasticity of compact bone. J Biomech 21:131–139 es_ES
dc.description.references Daszkiewicz K, Maquer G, Zysset PK (2017) The effective elastic properties of human trabecular bone may be approximated using micro-finite element analyses of embedded volume elements. Biomech Model Mechanobiol 16:731–742 es_ES
dc.description.references Faingold A, Sidney RC, Wagner HD (2012) Nanoindentation of osteonal bone lamellae. J Mech Biomech Materials 9:198–206 es_ES
dc.description.references Fratzl P, Fratzl-Zelman N, Klaushofer K, Vogl G, Koller K (1991) Nucleation and growth of mineral crystals in bone studied by small-angle X-ray scattering. Calcif Tissue Int 48:407–413 es_ES
dc.description.references Fritsch A, Hellmich C (2007) ’Universal’ microstructural patterns in cortical and trabecular, extracellular and extravascular bone materials: micromechanics-based prediction of anisotropic elasticity. J Theo Biol 24:597–620 es_ES
dc.description.references Grampp S, Genant HK, Mathur A, Lang P, Jergas M, Takada M, Glüer CC, Lu Y, Chavez M (1997) Comparisons of noninvasive bone mineral measurements in assessing age-related loss, fracture discrimination and diagnostic classification. J Bone Miner Res 12:697–711 es_ES
dc.description.references Grant CA, Langton C, Schuetz MA, Epari DR (2011) Determination of the material properties of ovine cortical bone. Poster No. 2226, 57th Orthopaedic Research Society (ORS) Annual meeting, Long Beach, California es_ES
dc.description.references Granke M, Gourrier A, Rupin F, Raum K, Peyrin F, Burghammer M, Saïd A, Laugier P (2012) Microfibril orientation dominates the microelastic properties of human bone tissue at the lamellar length scale. PLoS One 8:e58043 es_ES
dc.description.references Gurtin ME (1972) The linear theory of elasticity. Handbuch del Physik VIa 2:1–296 es_ES
dc.description.references Hamed E, Jasiuk I (2012) Elastic modeling of bone at nanostructural level. Mat Sci Eng R73:27–49 es_ES
dc.description.references Hernández CJ, Beaupré GS, Keller TS, Carter DR (2001a) The influence of bone volume fraction and ash fraction on bone strength and modulus. Bone 29:74–78 es_ES
dc.description.references Hill R (1952) The elastic behaviour of a crystalline aggregate. Proc Phys Soc Sec A 65:349–354 es_ES
dc.description.references Hodge AJ, Petruska JA (1963) Recent studies with the electron microscope on ordered aggregates of the tropocollagen macromolecule. In: Ramachandran GN (ed) Aspects of protein structure. Academic Press, New York, pp 289–300 es_ES
dc.description.references Jäger I, Fratzl P (2000) Mineralized collagen: a mechanical model with a staggered arrangement of mineral particles. Biophys J 78:1737–1746 es_ES
dc.description.references Kuhn JL, Goldstein SA, Choi K, London M, Feldkamp LA, Matthews LS (1989) Comparison of the trabecular and cortical tissue moduli from human iliac crests. J Orthop Res 7:876–884 es_ES
dc.description.references Landis WJ, Song MJ, Leith A, McEwen L, McEwen BF (1993) Mineral and organic matrix interaction in normally calcifying tendon visualized in three dimensions by high-voltage electron microscopic tomography and graphic image reconstruction. J Struct Biol 110:39–54 es_ES
dc.description.references Lees S, Heeley JD, Cleary PF (1979) A study of some properties of a sample of bovine cortical bone using ultrasound. Calcif Tissue Int 29:107–117 es_ES
dc.description.references Lekhnitskii SG (1963) Theory of elasticity of anisotropic elastic body. Holden-Day, San Francisco, pp 1–73 es_ES
dc.description.references Lempriere BM (1968) Poisson’s ratio in orthotropic materials. Am Inst Aeronaut Astronaut J J6:2226–2227 es_ES
dc.description.references Liu Y, Kim YK, Dai L, Li N, Khan SO, Pashley DH, Tay FR (2011) Hierarchical and non-hierarchical mineralization of collagen. Biomater 32:1291–1300 es_ES
dc.description.references Majumdar S, Kothari M, Augat P, Newitt DC, Link TM, Lin JC, Lang T, Lu Y, Genant HK (1998) High-resolution magnetic resonance imaging: three-dimensional trabecular bone architecture and biomechanical properties. Bone 22(5):445–454 es_ES
dc.description.references Martínez-Reina J, Domínguez J, García-Aznar JM (2011) Effect of porosity and mineral content on the elastic constants of cortical bone: a multiscale approach. Biomech Model Mechanobiol 10:309–322 es_ES
dc.description.references Nobakhti S, Limbert G, Thurner PJ (2014) Cement lines and interlamellar areas in compact bone as strain amplifiers—Contributors to elasticity, fracture toughness and mechanotransduction. J Mech Behav Biomed Mater 29:235–251 es_ES
dc.description.references Orgel JPRO, Irving TC, Miller A, Wess TJ (2006) Microfibrillar structure of type I collagen in situ. PNAS USA 103:9001–9005 es_ES
dc.description.references Reisinger AG, Pahr DH, Zysset PK (2010) Sensitivity analysis and parametric study of elastic properties of unidirectional mineralized bone fibril-array using mean field methods. Biomech Model Mechanobiol 9:499–510 es_ES
dc.description.references Reisinger AG, Pahr DH, Zysset PK (2011) Elastic anisotropy of bone lamellae as a function of fibril orientation pattern. Biomech Model Mechanobiol 10:67–77 es_ES
dc.description.references Rho JY, Kuhn-Spearing L, Zioupos P (1998) Mechanical properties and the hierarchical structure of bone. Med Eng Phys 20:92–102 es_ES
dc.description.references Robinson RA, Rochester MD (1952) An electron-microscopic study of the crystalline inorganic component of bone and its relationship to the organic matrix. J Bone Joint Surg 34–a:389–435 es_ES
dc.description.references Roque WL, Arcaro K, Alberich-Bayarri A (2013) Mechanical competence of bone: a new parameter to grade trabecular bone fragility from tortuosity and elasticity. IEEE Trans Bio Eng 60:1363–1370 es_ES
dc.description.references Rubin MA, Jasiuk I, Taylor J, Rubin J, Ganey T, Apkarian RP (2003) TEM analysis of the nanostructure of normal and osteoporotic human trabecular bone. Bone 33:270–282 es_ES
dc.description.references Sasaki N, Tagami A, Goto T, Taniguchi M, Nakata M, Hikichi K (2002) Atomic force microscopic studies on the structure of bovine femoral cortical bone at the collagen fibril-mineral level. J Mater Sci Mater Med 13(3):333–337 es_ES
dc.description.references Schaffler MB, Burr DB (1988) Stiffness of compact bone: effects of porosity and density. J Biomech 21:13–16 es_ES
dc.description.references Silver FH, Landis WJ (2011) Deposition of apatite in mineralizing vertebrate extracellular matrices: a model of possible nucleation sites on type I collagen. Connect Tissue Res 52:242–254 es_ES
dc.description.references Tommasini SM, Nasser P, Hu B, Jepsen KJ (2008) Biological co-adaptation of morphological and composition traits contributes to mechanical functionality and skeletal fragility. J Bone Miner Res 23:236–246 es_ES
dc.description.references Ulrich D, Rietbergen B, Weinans H, Rüegsegger P (1998) Finite element analysis of trabecular bone structure: a comparison of image-based meshing techniques. J Biomech 31:1187–1192 es_ES
dc.description.references Ulrich D, Rietbergen B, Laib A, Rüegsegger P (1999) The ability of three-dimensional structural indices to reflect mechanical aspects of trabecular bone. Bone 25:55–60 es_ES
dc.description.references Vercher A, Giner E, Arango C, Tarancón JE, Fuenmayor FJ (2014) Homogenized stiffness matrices for mineralized collagen fibrils and lamellar bone using unit cell finite element models. Biomech Model Mechanobiol 13:437–449 es_ES
dc.description.references Vercher-Martínez A, Giner E, Arango C, Fuenmayor FJ (2015) Influence of the mineral staggering on the elastic properties of the mineralized collagen fibril in lamellar bone. J Mech Behav Biomed Mater 42:243–256 es_ES
dc.description.references Wagermaier W, Gupta HS, Gourrier A, Burghammer M, Roschger P, Fratzl P (2006) Spiral twisting of fiber orientation inside bone lamellae. Biointerphases 1:1–5 es_ES
dc.description.references Weiner S, Traub W (1986) Organization of hydroxiapatite within collagen fibrils. FEBS Lett 206:262–266 es_ES
dc.description.references Weiner S, Wagner HD (1998) The material bone: structure-mechanical function relations. Annu Rev Mater Sci 28:271–298 es_ES
dc.description.references Yang L, Palermo L, Black DM, Eastell R (2014) Prediction of incident hip fracture with the estimated femoral strength by finite element analysis of DXA scans in the study of osteoporotic fractures. JBMR 29:2594–2600 es_ES
dc.description.references Yuan YJ, Cowin SC (2008a) The estimated elastic constants for a single bone osteonal lamella. Biomech Model Mechanobiol 7:1–11 es_ES
dc.description.references Yu W, Glüer CC, Grampp S, Jergas M, Fuerst T, Wu CY, Lu Y, Fan B, Genant HK (1995) Spinal bone mineral assessment in postmenopausal women: a comparison between dual X-ray absorptiometry and quantitative computed tomography. Osteoporos Int 5:433–439 es_ES
dc.description.references Yang L, Palermo L, Black DM, Eastell R (2014) Prediction of incident hip fracture with the estimated femoral strength by finite element analysis of DXS Scans in the study of osteoporotic fractures. J Bone Miner Res 29(12):2594–2600 es_ES
dc.description.references Yuan F, Stock SR, Haeffner DR, Almer JD, Dunand DC, Brinson LC (2011) A new model to simulate the elastic properties of mineralized collagen fibril. Biomech Model Mechanobiol 10:147–160 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem