- -

App Features for Type 1 Diabetes Support and Patient Empowerment: Systematic Literature Review and Benchmark Comparison

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

App Features for Type 1 Diabetes Support and Patient Empowerment: Systematic Literature Review and Benchmark Comparison

Show simple item record

Files in this item

dc.contributor.author Martinez-Millana, Antonio es_ES
dc.contributor.author Jarones, Elena es_ES
dc.contributor.author Fernández Llatas, Carlos es_ES
dc.contributor.author Hartvigsen, Gunnar es_ES
dc.contributor.author Traver Salcedo, Vicente es_ES
dc.date.accessioned 2019-05-25T20:39:08Z
dc.date.available 2019-05-25T20:39:08Z
dc.date.issued 2018 es_ES
dc.identifier.uri http://hdl.handle.net/10251/121079
dc.description.abstract [EN] Background: Research in type 1 diabetes management has increased exponentially since the irruption of mobile health apps for its remote and self-management. Despite this fact, the features affect in the disease management and patient empowerment are adopted by app makers and provided to the general population remain unexplored. Objective: To study the gap between literature and available apps for type 1 diabetes self-management and patient empowerment and to discover the features that an ideal app should provide to people with diabetes. Methods: The methodology comprises systematic reviews in the scientific literature and app marketplaces. We included articles describing interventions that demonstrated an effect on diabetes management with particular clinical endpoints through the use of mobile technologies. The features of these apps were gathered in a taxonomy of what an ideal app should look like to then assess which of these features are available in the market. Results: The literature search resulted in 231 matches. Of these, 55 met the inclusion criteria. A taxonomy featuring 3 levels of characteristics was designed based on 5 papers which were selected for the synthesis. Level 1 includes 10 general features (Personalization, Family support, Agenda, Data record, Insulin bolus calculator, Data management, Interaction, Tips and support, Reminders, and Rewards) Level 2 and Level 3 included features providing a descriptive detail of Level 1 features. Eighty apps matching the inclusion criteria were analyzed. None of the assessed apps fulfilled the features of the taxonomy of an ideal app. Personalization (70/80, 87.5%) and Data record (64/80, 80.0%) were the 2 top prevalent features, whereas Agenda (5/80, 6.3%) and Rewards (3/80, 3.8%) where the less predominant. The operating system was not associated with the number of features (P=.42, F=.81) nor the type of feature (P=.20, ¿2=11.7). Apps were classified according to the number of level 1 features and sorted into quartiles. First quartile apps had a regular distribution of the ten features in the taxonomy whereas the other 3 quartiles had an irregular distribution. Conclusions: There are significant gaps between research and the market in mobile health for type 1 diabetes management. While the literature focuses on aspects related to gamification, rewarding, and social communities, the available apps are focused on disease management aspects such as data record and appointments. Personalized and tailored empowerment features should be included in commercial apps for large-scale assessment of potential in the self-management of the disease es_ES
dc.language Inglés es_ES
dc.publisher JMIR Publications es_ES
dc.relation.ispartof JMIR mHealth and uHealth es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject MHealth es_ES
dc.subject Type 1 diabetes mellitus es_ES
dc.subject Patient empowerment es_ES
dc.subject Apps es_ES
dc.subject Diabetes self-management es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.title App Features for Type 1 Diabetes Support and Patient Empowerment: Systematic Literature Review and Benchmark Comparison es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.2196/12237 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/J4EC/H2020/692023/EU
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica es_ES
dc.description.bibliographicCitation Martinez-Millana, A.; Jarones, E.; Fernández Llatas, C.; Hartvigsen, G.; Traver Salcedo, V. (2018). App Features for Type 1 Diabetes Support and Patient Empowerment: Systematic Literature Review and Benchmark Comparison. JMIR mHealth and uHealth. 6(11). https://doi.org/10.2196/12237 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.org/ PMC6083047 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 6 es_ES
dc.description.issue 11 es_ES
dc.identifier.eissn 2291-5222 es_ES
dc.identifier.pmid 30463839
dc.identifier.pmcid PMC6282013
dc.relation.pasarela S\372971 es_ES
dc.relation.references (2016). 2. Classification and Diagnosis of Diabetes. Diabetes Care, 40(Supplement 1), S11-S24. doi:10.2337/dc17-s005 es_ES
dc.relation.references Guariguata, L., Whiting, D. R., Hambleton, I., Beagley, J., Linnenkamp, U., & Shaw, J. E. (2014). Global estimates of diabetes prevalence for 2013 and projections for 2035. Diabetes Research and Clinical Practice, 103(2), 137-149. doi:10.1016/j.diabres.2013.11.002 es_ES
dc.relation.references Modern-Day Clinical Course of Type 1 Diabetes Mellitus After 30 Years’ Duration. (2009). Archives of Internal Medicine, 169(14), 1307. doi:10.1001/archinternmed.2009.193 es_ES
dc.relation.references Martinez-Millana, A., Fico, G., Fernández-Llatas, C., & Traver, V. (2015). Performance assessment of a closed-loop system for diabetes management. Medical & Biological Engineering & Computing, 53(12), 1295-1303. doi:10.1007/s11517-015-1245-3 es_ES
dc.relation.references Lim, S., Kang, S. M., Shin, H., Lee, H. J., Won Yoon, J., Yu, S. H., … Jang, H. C. (2011). Improved Glycemic Control Without Hypoglycemia in Elderly Diabetic Patients Using the Ubiquitous Healthcare Service, a New Medical Information System. Diabetes Care, 34(2), 308-313. doi:10.2337/dc10-1447 es_ES
dc.relation.references Wang, J., Wang, Y., Wei, C., Yao, N. (Aaron), Yuan, A., Shan, Y., & Yuan, C. (2014). Smartphone Interventions for Long-Term Health Management of Chronic Diseases: An Integrative Review. Telemedicine and e-Health, 20(6), 570-583. doi:10.1089/tmj.2013.0243 es_ES
dc.relation.references Ashurst, E. J., Jones, R. B., Abraham, C., Jenner, M., Boddy, K., Besser, R. E., & Hammersley, S. (2014). The Diabetes App Challenge: User-Led Development and Piloting of Internet Applications Enabling Young People With Diabetes to Set the Focus for Their Diabetes Consultations. Medicine 2.0, 3(2), e5. doi:10.2196/med20.3032 es_ES
dc.relation.references Chomutare, T., Fernandez-Luque, L., Årsand, E., & Hartvigsen, G. (2011). Features of Mobile Diabetes Applications: Review of the Literature and Analysis of Current Applications Compared Against Evidence-Based Guidelines. Journal of Medical Internet Research, 13(3), e65. doi:10.2196/jmir.1874 es_ES
dc.relation.references Chavez, S., Fedele, D., Guo, Y., Bernier, A., Smith, M., Warnick, J., & Modave, F. (2017). Mobile Apps for the Management of Diabetes. Diabetes Care, 40(10), e145-e146. doi:10.2337/dc17-0853 es_ES
dc.relation.references Castensøe-Seidenfaden, P., Reventlov Husted, G., Teilmann, G., Hommel, E., Olsen, B. S., & Kensing, F. (2017). Designing a Self-Management App for Young People With Type 1 Diabetes: Methodological Challenges, Experiences, and Recommendations. JMIR mHealth and uHealth, 5(10), e124. doi:10.2196/mhealth.8137 es_ES
dc.relation.references HigginsJCochrane Handbook for Systematic Reviews of Interventions Version 520112018-10-29The Cochrane Collaborationhttps://training.cochrane.org/handbook es_ES
dc.relation.references Castensøe-Seidenfaden, P., Husted, G. R., Jensen, A. K., Hommel, E., Olsen, B., Pedersen-Bjergaard, U., … Teilmann, G. (2018). Testing a Smartphone App (Young with Diabetes) to Improve Self-Management of Diabetes Over 12 Months: Randomized Controlled Trial. JMIR mHealth and uHealth, 6(6), e141. doi:10.2196/mhealth.9487 es_ES
dc.relation.references Cafazzo, J. A., Casselman, M., Hamming, N., Katzman, D. K., & Palmert, M. R. (2012). Design of an mHealth App for the Self-management of Adolescent Type 1 Diabetes: A Pilot Study. Journal of Medical Internet Research, 14(3), e70. doi:10.2196/jmir.2058 es_ES
dc.relation.references Goyal, S., Nunn, C. A., Rotondi, M., Couperthwaite, A. B., Reiser, S., Simone, A., … Palmert, M. R. (2017). A Mobile App for the Self-Management of Type 1 Diabetes Among Adolescents: A Randomized Controlled Trial. JMIR mHealth and uHealth, 5(6), e82. doi:10.2196/mhealth.7336 es_ES
dc.relation.references Kirwan, M., Vandelanotte, C., Fenning, A., & Duncan, M. J. (2013). Diabetes Self-Management Smartphone Application for Adults With Type 1 Diabetes: Randomized Controlled Trial. Journal of Medical Internet Research, 15(11), e235. doi:10.2196/jmir.2588 es_ES
dc.relation.references Clements, M. A., & Staggs, V. S. (2017). A Mobile App for Synchronizing Glucometer Data: Impact on Adherence and Glycemic Control Among Youths With Type 1 Diabetes in Routine Care. Journal of Diabetes Science and Technology, 11(3), 461-467. doi:10.1177/1932296817691302 es_ES
dc.relation.references Ryan, E. A., Holland, J., Stroulia, E., Bazelli, B., Babwik, S. A., Li, H., … Greiner, R. (2017). Improved A1C Levels in Type 1 Diabetes with Smartphone App Use. Canadian Journal of Diabetes, 41(1), 33-40. doi:10.1016/j.jcjd.2016.06.001 es_ES
dc.relation.references Sun, C., Malcolm, J. C., Wong, B., Shorr, R., & Doyle, M.-A. (2019). Improving Glycemic Control in Adults and Children With Type 1 Diabetes With the Use of Smartphone-Based Mobile Applications: A Systematic Review. Canadian Journal of Diabetes, 43(1), 51-58.e3. doi:10.1016/j.jcjd.2018.03.010 es_ES
dc.relation.references Chen, L., Chuang, L.-M., Chang, C.-H., Wang, C.-S., Wang, I.-C., Chung, Y., … Lai, F. (2013). Evaluating Self-Management Behaviors of Diabetic Patients in a Telehealthcare Program: Longitudinal Study Over 18 Months. Journal of Medical Internet Research, 15(12), e266. doi:10.2196/jmir.2699 es_ES
dc.relation.references Tomky, D., Tomky, D., Cypress, M., Dang, D., Maryniuk, M., Peyrot, M., & Mensing, C. (2008). Aade Position Statement. The Diabetes Educator, 34(3), 445-449. doi:10.1177/0145721708316625 es_ES
dc.relation.references Ye, Q., Khan, U., Boren, S. A., Simoes, E. J., & Kim, M. S. (2018). An Analysis of Diabetes Mobile Applications Features Compared to AADE7™: Addressing Self-Management Behaviors in People With Diabetes. Journal of Diabetes Science and Technology, 12(4), 808-816. doi:10.1177/1932296818754907 es_ES
dc.relation.references Holtz, B. E., Murray, K. M., Hershey, D. D., Dunneback, J. K., Cotten, S. R., Holmstrom, A. J., … Wood, M. A. (2017). Developing a Patient-Centered mHealth App: A Tool for Adolescents With Type 1 Diabetes and Their Parents. JMIR mHealth and uHealth, 5(4), e53. doi:10.2196/mhealth.6654 es_ES
dc.relation.references Gabarron, E., Årsand, E., & Wynn, R. (2018). Social Media Use in Interventions for Diabetes: Rapid Evidence-Based Review. Journal of Medical Internet Research, 20(8), e10303. doi:10.2196/10303 es_ES
dc.relation.references Sannino, G., Forastiere, M., & De Pietro, G. (2017). A Wellness Mobile Application for Smart Health: Pilot Study Design and Results. Sensors, 17(3), 611. doi:10.3390/s17030611 es_ES
dc.relation.references Adams, R. (2010). Improving health outcomes with better patient understanding and education. Risk Management and Healthcare Policy, 61. doi:10.2147/rmhp.s7500 es_ES
dc.relation.references Giunti, G. (2018). 3MD for Chronic Conditions, a Model for Motivational mHealth Design: Embedded Case Study. JMIR Serious Games, 6(3), e11631. doi:10.2196/11631 es_ES
dc.relation.references Dagliati, A., Sacchi, L., Tibollo, V., Cogni, G., Teliti, M., Martinez-Millana, A., … Bellazzi, R. (2018). A dashboard-based system for supporting diabetes care. Journal of the American Medical Informatics Association, 25(5), 538-547. doi:10.1093/jamia/ocx159 es_ES
dc.relation.references Martinez-Millana, A., Bayo-Monton, J.-L., Argente-Pla, M., Fernandez-Llatas, C., Merino-Torres, J., & Traver-Salcedo, V. (2017). Integration of Distributed Services and Hybrid Models Based on Process Choreography to Predict and Detect Type 2 Diabetes. Sensors, 18(2), 79. doi:10.3390/s18010079 es_ES
dc.relation.references Contreras, I., & Vehi, J. (2018). Artificial Intelligence for Diabetes Management and Decision Support: Literature Review. Journal of Medical Internet Research, 20(5), e10775. doi:10.2196/10775 es_ES


This item appears in the following Collection(s)

Show simple item record