Mostrar el registro sencillo del ítem
dc.contributor.author | Martinez-Millana, Antonio | es_ES |
dc.contributor.author | Jarones, Elena | es_ES |
dc.contributor.author | Fernández Llatas, Carlos | es_ES |
dc.contributor.author | Hartvigsen, Gunnar | es_ES |
dc.contributor.author | Traver Salcedo, Vicente | es_ES |
dc.date.accessioned | 2019-05-25T20:39:08Z | |
dc.date.available | 2019-05-25T20:39:08Z | |
dc.date.issued | 2018 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/121079 | |
dc.description.abstract | [EN] Background: Research in type 1 diabetes management has increased exponentially since the irruption of mobile health apps for its remote and self-management. Despite this fact, the features affect in the disease management and patient empowerment are adopted by app makers and provided to the general population remain unexplored. Objective: To study the gap between literature and available apps for type 1 diabetes self-management and patient empowerment and to discover the features that an ideal app should provide to people with diabetes. Methods: The methodology comprises systematic reviews in the scientific literature and app marketplaces. We included articles describing interventions that demonstrated an effect on diabetes management with particular clinical endpoints through the use of mobile technologies. The features of these apps were gathered in a taxonomy of what an ideal app should look like to then assess which of these features are available in the market. Results: The literature search resulted in 231 matches. Of these, 55 met the inclusion criteria. A taxonomy featuring 3 levels of characteristics was designed based on 5 papers which were selected for the synthesis. Level 1 includes 10 general features (Personalization, Family support, Agenda, Data record, Insulin bolus calculator, Data management, Interaction, Tips and support, Reminders, and Rewards) Level 2 and Level 3 included features providing a descriptive detail of Level 1 features. Eighty apps matching the inclusion criteria were analyzed. None of the assessed apps fulfilled the features of the taxonomy of an ideal app. Personalization (70/80, 87.5%) and Data record (64/80, 80.0%) were the 2 top prevalent features, whereas Agenda (5/80, 6.3%) and Rewards (3/80, 3.8%) where the less predominant. The operating system was not associated with the number of features (P=.42, F=.81) nor the type of feature (P=.20, ¿2=11.7). Apps were classified according to the number of level 1 features and sorted into quartiles. First quartile apps had a regular distribution of the ten features in the taxonomy whereas the other 3 quartiles had an irregular distribution. Conclusions: There are significant gaps between research and the market in mobile health for type 1 diabetes management. While the literature focuses on aspects related to gamification, rewarding, and social communities, the available apps are focused on disease management aspects such as data record and appointments. Personalized and tailored empowerment features should be included in commercial apps for large-scale assessment of potential in the self-management of the disease | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | JMIR Publications | es_ES |
dc.relation.ispartof | JMIR mHealth and uHealth | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | MHealth | es_ES |
dc.subject | Type 1 diabetes mellitus | es_ES |
dc.subject | Patient empowerment | es_ES |
dc.subject | Apps | es_ES |
dc.subject | Diabetes self-management | es_ES |
dc.subject.classification | TECNOLOGIA ELECTRONICA | es_ES |
dc.title | App Features for Type 1 Diabetes Support and Patient Empowerment: Systematic Literature Review and Benchmark Comparison | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.2196/12237 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/692023/EU/Linking excellence in biomedical knowledge and computational intelligence research for personalized management of CVD within PHC/ | |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica | es_ES |
dc.description.bibliographicCitation | Martinez-Millana, A.; Jarones, E.; Fernández Llatas, C.; Hartvigsen, G.; Traver Salcedo, V. (2018). App Features for Type 1 Diabetes Support and Patient Empowerment: Systematic Literature Review and Benchmark Comparison. JMIR mHealth and uHealth. 6(11). https://doi.org/10.2196/12237 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://doi.org/ PMC6083047 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 6 | es_ES |
dc.description.issue | 11 | es_ES |
dc.identifier.eissn | 2291-5222 | es_ES |
dc.identifier.pmid | 30463839 | |
dc.identifier.pmcid | PMC6282013 | |
dc.relation.pasarela | S\372971 | es_ES |
dc.description.references | (2016). 2. Classification and Diagnosis of Diabetes. Diabetes Care, 40(Supplement 1), S11-S24. doi:10.2337/dc17-s005 | es_ES |
dc.description.references | Guariguata, L., Whiting, D. R., Hambleton, I., Beagley, J., Linnenkamp, U., & Shaw, J. E. (2014). Global estimates of diabetes prevalence for 2013 and projections for 2035. Diabetes Research and Clinical Practice, 103(2), 137-149. doi:10.1016/j.diabres.2013.11.002 | es_ES |
dc.description.references | Modern-Day Clinical Course of Type 1 Diabetes Mellitus After 30 Years’ Duration. (2009). Archives of Internal Medicine, 169(14), 1307. doi:10.1001/archinternmed.2009.193 | es_ES |
dc.description.references | Martinez-Millana, A., Fico, G., Fernández-Llatas, C., & Traver, V. (2015). Performance assessment of a closed-loop system for diabetes management. Medical & Biological Engineering & Computing, 53(12), 1295-1303. doi:10.1007/s11517-015-1245-3 | es_ES |
dc.description.references | Lim, S., Kang, S. M., Shin, H., Lee, H. J., Won Yoon, J., Yu, S. H., … Jang, H. C. (2011). Improved Glycemic Control Without Hypoglycemia in Elderly Diabetic Patients Using the Ubiquitous Healthcare Service, a New Medical Information System. Diabetes Care, 34(2), 308-313. doi:10.2337/dc10-1447 | es_ES |
dc.description.references | Wang, J., Wang, Y., Wei, C., Yao, N. (Aaron), Yuan, A., Shan, Y., & Yuan, C. (2014). Smartphone Interventions for Long-Term Health Management of Chronic Diseases: An Integrative Review. Telemedicine and e-Health, 20(6), 570-583. doi:10.1089/tmj.2013.0243 | es_ES |
dc.description.references | Ashurst, E. J., Jones, R. B., Abraham, C., Jenner, M., Boddy, K., Besser, R. E., & Hammersley, S. (2014). The Diabetes App Challenge: User-Led Development and Piloting of Internet Applications Enabling Young People With Diabetes to Set the Focus for Their Diabetes Consultations. Medicine 2.0, 3(2), e5. doi:10.2196/med20.3032 | es_ES |
dc.description.references | Chomutare, T., Fernandez-Luque, L., Årsand, E., & Hartvigsen, G. (2011). Features of Mobile Diabetes Applications: Review of the Literature and Analysis of Current Applications Compared Against Evidence-Based Guidelines. Journal of Medical Internet Research, 13(3), e65. doi:10.2196/jmir.1874 | es_ES |
dc.description.references | Chavez, S., Fedele, D., Guo, Y., Bernier, A., Smith, M., Warnick, J., & Modave, F. (2017). Mobile Apps for the Management of Diabetes. Diabetes Care, 40(10), e145-e146. doi:10.2337/dc17-0853 | es_ES |
dc.description.references | Castensøe-Seidenfaden, P., Reventlov Husted, G., Teilmann, G., Hommel, E., Olsen, B. S., & Kensing, F. (2017). Designing a Self-Management App for Young People With Type 1 Diabetes: Methodological Challenges, Experiences, and Recommendations. JMIR mHealth and uHealth, 5(10), e124. doi:10.2196/mhealth.8137 | es_ES |
dc.description.references | HigginsJCochrane Handbook for Systematic Reviews of Interventions Version 520112018-10-29The Cochrane Collaborationhttps://training.cochrane.org/handbook | es_ES |
dc.description.references | Castensøe-Seidenfaden, P., Husted, G. R., Jensen, A. K., Hommel, E., Olsen, B., Pedersen-Bjergaard, U., … Teilmann, G. (2018). Testing a Smartphone App (Young with Diabetes) to Improve Self-Management of Diabetes Over 12 Months: Randomized Controlled Trial. JMIR mHealth and uHealth, 6(6), e141. doi:10.2196/mhealth.9487 | es_ES |
dc.description.references | Cafazzo, J. A., Casselman, M., Hamming, N., Katzman, D. K., & Palmert, M. R. (2012). Design of an mHealth App for the Self-management of Adolescent Type 1 Diabetes: A Pilot Study. Journal of Medical Internet Research, 14(3), e70. doi:10.2196/jmir.2058 | es_ES |
dc.description.references | Goyal, S., Nunn, C. A., Rotondi, M., Couperthwaite, A. B., Reiser, S., Simone, A., … Palmert, M. R. (2017). A Mobile App for the Self-Management of Type 1 Diabetes Among Adolescents: A Randomized Controlled Trial. JMIR mHealth and uHealth, 5(6), e82. doi:10.2196/mhealth.7336 | es_ES |
dc.description.references | Kirwan, M., Vandelanotte, C., Fenning, A., & Duncan, M. J. (2013). Diabetes Self-Management Smartphone Application for Adults With Type 1 Diabetes: Randomized Controlled Trial. Journal of Medical Internet Research, 15(11), e235. doi:10.2196/jmir.2588 | es_ES |
dc.description.references | Clements, M. A., & Staggs, V. S. (2017). A Mobile App for Synchronizing Glucometer Data: Impact on Adherence and Glycemic Control Among Youths With Type 1 Diabetes in Routine Care. Journal of Diabetes Science and Technology, 11(3), 461-467. doi:10.1177/1932296817691302 | es_ES |
dc.description.references | Ryan, E. A., Holland, J., Stroulia, E., Bazelli, B., Babwik, S. A., Li, H., … Greiner, R. (2017). Improved A1C Levels in Type 1 Diabetes with Smartphone App Use. Canadian Journal of Diabetes, 41(1), 33-40. doi:10.1016/j.jcjd.2016.06.001 | es_ES |
dc.description.references | Sun, C., Malcolm, J. C., Wong, B., Shorr, R., & Doyle, M.-A. (2019). Improving Glycemic Control in Adults and Children With Type 1 Diabetes With the Use of Smartphone-Based Mobile Applications: A Systematic Review. Canadian Journal of Diabetes, 43(1), 51-58.e3. doi:10.1016/j.jcjd.2018.03.010 | es_ES |
dc.description.references | Chen, L., Chuang, L.-M., Chang, C.-H., Wang, C.-S., Wang, I.-C., Chung, Y., … Lai, F. (2013). Evaluating Self-Management Behaviors of Diabetic Patients in a Telehealthcare Program: Longitudinal Study Over 18 Months. Journal of Medical Internet Research, 15(12), e266. doi:10.2196/jmir.2699 | es_ES |
dc.description.references | Tomky, D., Tomky, D., Cypress, M., Dang, D., Maryniuk, M., Peyrot, M., & Mensing, C. (2008). Aade Position Statement. The Diabetes Educator, 34(3), 445-449. doi:10.1177/0145721708316625 | es_ES |
dc.description.references | Ye, Q., Khan, U., Boren, S. A., Simoes, E. J., & Kim, M. S. (2018). An Analysis of Diabetes Mobile Applications Features Compared to AADE7™: Addressing Self-Management Behaviors in People With Diabetes. Journal of Diabetes Science and Technology, 12(4), 808-816. doi:10.1177/1932296818754907 | es_ES |
dc.description.references | Holtz, B. E., Murray, K. M., Hershey, D. D., Dunneback, J. K., Cotten, S. R., Holmstrom, A. J., … Wood, M. A. (2017). Developing a Patient-Centered mHealth App: A Tool for Adolescents With Type 1 Diabetes and Their Parents. JMIR mHealth and uHealth, 5(4), e53. doi:10.2196/mhealth.6654 | es_ES |
dc.description.references | Gabarron, E., Årsand, E., & Wynn, R. (2018). Social Media Use in Interventions for Diabetes: Rapid Evidence-Based Review. Journal of Medical Internet Research, 20(8), e10303. doi:10.2196/10303 | es_ES |
dc.description.references | Sannino, G., Forastiere, M., & De Pietro, G. (2017). A Wellness Mobile Application for Smart Health: Pilot Study Design and Results. Sensors, 17(3), 611. doi:10.3390/s17030611 | es_ES |
dc.description.references | Adams, R. (2010). Improving health outcomes with better patient understanding and education. Risk Management and Healthcare Policy, 61. doi:10.2147/rmhp.s7500 | es_ES |
dc.description.references | Giunti, G. (2018). 3MD for Chronic Conditions, a Model for Motivational mHealth Design: Embedded Case Study. JMIR Serious Games, 6(3), e11631. doi:10.2196/11631 | es_ES |
dc.description.references | Dagliati, A., Sacchi, L., Tibollo, V., Cogni, G., Teliti, M., Martinez-Millana, A., … Bellazzi, R. (2018). A dashboard-based system for supporting diabetes care. Journal of the American Medical Informatics Association, 25(5), 538-547. doi:10.1093/jamia/ocx159 | es_ES |
dc.description.references | Martinez-Millana, A., Bayo-Monton, J.-L., Argente-Pla, M., Fernandez-Llatas, C., Merino-Torres, J., & Traver-Salcedo, V. (2017). Integration of Distributed Services and Hybrid Models Based on Process Choreography to Predict and Detect Type 2 Diabetes. Sensors, 18(2), 79. doi:10.3390/s18010079 | es_ES |
dc.description.references | Contreras, I., & Vehi, J. (2018). Artificial Intelligence for Diabetes Management and Decision Support: Literature Review. Journal of Medical Internet Research, 20(5), e10775. doi:10.2196/10775 | es_ES |