Mostrar el registro sencillo del ítem
dc.contributor.author | Paches Giner, Maria Aguas Vivas | es_ES |
dc.contributor.author | Aguado García, Daniel | es_ES |
dc.contributor.author | Martínez-Guijarro, Mª Remedios | es_ES |
dc.contributor.author | Romero Gil, Inmaculada | es_ES |
dc.date.accessioned | 2019-05-31T20:42:38Z | |
dc.date.available | 2019-05-31T20:42:38Z | |
dc.date.issued | 2019 | es_ES |
dc.identifier.issn | 0944-1344 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/121350 | |
dc.description.abstract | [EN] Ecosystem-based management is one of the strategies to protect the coastal areas. One of the key elements is phytoplankton community composition since it represents a good indicator of anthropogenic pressures. This identifies the seasonal patterns of phytoplankton, and its alterations by the stress factors induced by human activities are highly valuable. This research represents the first attempt to study that 476 km of western Mediterranean coastal belongs to the Valencian Community (Spain) based on the phytoplankton composition approach. The water samples during a 5-year period (6757 water samples) were taken to determine its phytoplankton group¿s dynamics and its relationship with anthropogenic stressors by means of a series of plots and statistical analyses. Diatoms are the group that most contribute to the whole community composition with two periods of maximum abundance. The Prasinophyceae and Cryptophyceae show unimodal patterns varying its maximum values depending on the season. The picocyanobacteria group exhibited the clearest and bestdefined pattern. Other groups have no clear seasonal pattern and become abundant in areas of higher anthropogenic pressure. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer-Verlag | es_ES |
dc.relation.ispartof | Environmental Science and Pollution Research | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Mediterranean Sea | es_ES |
dc.subject | Phytoplankton | es_ES |
dc.subject | Seasonality | es_ES |
dc.subject | Anthropogenic pressure | es_ES |
dc.subject.classification | TECNOLOGIA DEL MEDIO AMBIENTE | es_ES |
dc.title | Long-term study of seasonal changes in phytoplankton community structure in the western Mediterranean (Valencian Community) | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s11356-019-04660-x | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient | es_ES |
dc.description.bibliographicCitation | Paches Giner, MAV.; Aguado García, D.; Martínez-Guijarro, MR.; Romero Gil, I. (2019). Long-term study of seasonal changes in phytoplankton community structure in the western Mediterranean (Valencian Community). Environmental Science and Pollution Research. 26(14):14266-14276. https://doi.org/10.1007/s11356-019-04660-x | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1007/s11356-019-04660-x | es_ES |
dc.description.upvformatpinicio | 14266 | es_ES |
dc.description.upvformatpfin | 14276 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 26 | es_ES |
dc.description.issue | 14 | es_ES |
dc.relation.pasarela | S\381114 | es_ES |
dc.description.references | Alvain S, Moulin C, Dandonneau Y, Loisel H (2008) Seasonal distribution and succession of dominant phytoplankton groups in the global ocean: a satellite view. Glob Biogeochem Cycles 22:GB3001. https://doi.org/10.1029/2007GB003154 | es_ES |
dc.description.references | Boyd PW, Rynearson TA, Armstrong EA, Fu F, Hayashi K, Hu Z, Hutchins DA, Kudela RM, Litchman E, Mulholland MR, Passow U, Strzepek RF, Whittaker KA, Yu E, Thomas MK (2013) Marine phytoplankton temperature versus growth responses from polar to tropical waters – outcome of a scientific community-wide study. PLoS One 8(5):e63091. https://doi.org/10.1371/journal.pone.0063091 | es_ES |
dc.description.references | Buitenhuis E, Li WKW, Vaulot D, Lomas MW, Landry MR, Partensky F, Karl DM, Ulloa O, Campbell L, Jacquet S, Lantoine F, Chavez F, Macias D, Gosselin M, McManus GB (2012) Picophytoplankton biomass distribution in the global ocean. Earth Syst Sci Data 4:37–46 | es_ES |
dc.description.references | Casas B, Varela M, Canle M, González N, Bodea A (1997) Seasonal variations of nutrients, seston and phytoplankton, and upwelling intensity off La Coruña (NW Spain). Estuar Coast Shelf Sci 44:767–778 | es_ES |
dc.description.references | Cerino F, Zingone A (2006) A survey of cryptomonad diversity and seasonality at a coastal Mediterranean site. Eur J Phycol 41:363–378 | es_ES |
dc.description.references | Chen B, Liu H (2010) Relationships between phytoplankton growth and cell size in surface oceans: interactive effects of temperature, nutrients, and grazing. Limnol Oceanogr 55:965–972 | es_ES |
dc.description.references | Chisholm SW (1992) Phytoplankton size. In: Falkowski PG, Woodhead AD, Vivirito K (eds) Primary productivity and biogeochemical cycles in the sea. Springer, Boston | es_ES |
dc.description.references | Claudet J, Fraschetti S (2010) Human-driven impacts on marine habitats: a regional meta-analysis in the Mediterranean Sea. Biol Conserv 143:2195–2206 | es_ES |
dc.description.references | Cloern JE, Foster SQ, Kleckner AE (2014) Phytoplankton primary production in the world’s estuarine-coastal. Biogeosciences 11:2477–2501. https://doi.org/10.5194/bg-11-2477-2014 | es_ES |
dc.description.references | Díez B, Pedrós-Alió C, Marsh TL, Massana R (2001) Application of denaturing gradient gel electrophoresis (DGGE) to study the diversity of marine picoeukaryotic assemblages and comparison of DGGE with other molecular techniques. Appl Environ Microbiol 67:2942–2951 | es_ES |
dc.description.references | Edwards M, Richardson AJ (2004) Impact of climate change on marine pelagic phenology and trophic mismatch. Nature 430:881–884 | es_ES |
dc.description.references | Falkowski PG, Barber RT, Smetacek V (1998) Biogeochemical controls and feedbacks on ocean primary production. Science 281:200–206 | es_ES |
dc.description.references | Hair JE, Anderson RE, Tatham RL, Black WC (2006) Multivariate data analysis, 5th edn. Prentice Hall, Upper Saddle River | es_ES |
dc.description.references | Hoef-Emden K (2014) Osmotolerance in the Cryptophyceae: jacks-of-all trades in the Chroomonas clade. Protist. 165:123–143 | es_ES |
dc.description.references | Jones RI (2000) Mixotrophy in planktonic protists: an overview. Freshw Biol 45:219–226 | es_ES |
dc.description.references | Kaiser H (1974) An index of factorial simplicity. Psychometrika 39:31–36 | es_ES |
dc.description.references | Kirkwood D, Aminot A, Pertillä M (1991) Report on the results of the fourth intercomparison exercise for nutrients in sea water. ICES Cooperative Research Report, n°174 | es_ES |
dc.description.references | Lejeusne C, Chevaldonne P, Pergent-Martini C, Boudouresque CF, Perez T (2010) Climate change effects on a miniature ocean: the highly diverse, highly impacted Mediterranean Sea. Trends Ecol Evol 25:250–260 | es_ES |
dc.description.references | Lepistö L, Holopainen A (2003) Occurrence of Cryptophyceae and katablepharids in boreal lakes. Hydrobiologia 502:307–310 | es_ES |
dc.description.references | Litchman E, Klausmeier CA (2008) Trait-based community ecology of phytoplankton. Annu Rev Ecol Evol Syst 39:615–639 | es_ES |
dc.description.references | Lund JWG, Kipling C, Le Cren ED (1958) The inverted microscope method of estimating algal numbers and the statistical basis of estimations by counting. Hydrobiologia 11:143–170 | es_ES |
dc.description.references | Marie D, Zhu F, Balaguer V, Ras J, Vaulot D (2006) Eukaryotic picoplankton communities of the Mediterranean Sea in summer assessed by molecular approaches (DGGE, TTGE, QPCR). FEMS Microbiol Ecol 55:403–415 | es_ES |
dc.description.references | Micheli F, Halpern B, Walbridge S, Ciriaco S, Ferretti F, Fraschetti S, Lewison R, Nykjaer L, Rosenberg AA (2013) Cumulative human impacts on Mediterranean and Black Sea marine ecosystems: assessing current pressures and opportunities. PLoS One 8(12):e79889. https://doi.org/10.1371/journal.pone.0079889 | es_ES |
dc.description.references | Moisan JR, Moisan TA, Abbot MR (2002) Modelling the effect of temperature on the maximum growth rates of phytoplankton populations. Ecol Model 153:197–215 | es_ES |
dc.description.references | Morán XAG (2007) Annual cycle of picophytoplankton photosynthesis and growth rates in a temperate coastal ecosystem: a major contribution to carbon fluxes. Aquat Microb Ecol 49:267–279 | es_ES |
dc.description.references | Niemi G, Wardrop D, Brooks R, Anderson S, Brady V, Paerl H, Rakocinski C, Brouwer M, Levinson B, McDonald M (2004) Rationale for a new generation of indicators for coastal waters. Environ Health Perspect 112:979–986 | es_ES |
dc.description.references | Pachés M, Romero I, Hermosilla Z, Martínez-Guijarro R (2012) Phymed: an ecological classification system for the water framework directive based on phytoplankton community composition. Ecol Indic 19:15–23 | es_ES |
dc.description.references | Palenik B, Grimwoodc J, Aerts A, Rouzé P, Salamov A, Putnam N (2007) The tiny eukaryote Ostreococcus provides genomic insights into the paradox of plankton speciation. Proc Natl Acad Sci U S A 104:7705–7710 | es_ES |
dc.description.references | Parsons TR, Maita Y, Lalli CM (1984) A manual of chemical and biological methods for seawater analysis. Pergamon Press, London | es_ES |
dc.description.references | Reynolds CS (2006) The ecology of phytoplankton. Cambridge University Press, Cambridge | es_ES |
dc.description.references | Reynolds CS, Huszar V, Kruk C, Naselli-Flores L, Melo S (2002) Towards a functional classification of the freshwater phytoplankton. J Plankton Res 24:417–428. https://doi.org/10.1093/plankt/24.5.417 | es_ES |
dc.description.references | Ribera d’Alcalà M, Conversano F, Corato F, Licandro P, Mangoni O, Marino D, Mazzocchi MG, Modigh M, Montresor M, Nardella M, Saggiomo V, Sarno D, Zingone A (2004) Seasonal patterns in plankton communities in a pluriannual time series at a coastal Mediterranean site (gulf on Naples): an attempt to discern recurrences and trends. Sci Mar 68:65–83 | es_ES |
dc.description.references | Romero I, Pachés M, Martínez-Guijarro R, Ferrer J (2013) Glophymed: an index to establish the ecological status for the water framework directive based on phytoplankton in coastal waters. Mar Pollut Bull 75:218–223. https://doi.org/10.1016/j.marpolbul.2013.07.028 | es_ES |
dc.description.references | Sammartino M, Di Cicco A, Marullo S, Santoleri R (2015) Spatio-temporal variability of micro-, nano- and pico-phytoplankton in the Mediterranean Sea from satellite ocean colour data of SeaWiFS. Ocean Sci 11:759–778. https://doi.org/10.5194/os-11-759-2015 | es_ES |
dc.description.references | Smayda TJ (1980) Phytoplankton succession. In: Morris I (ed) Physiological ecology of phytoplankton, studies in ecology. Blackwell, Oxford, pp 493–570 | es_ES |
dc.description.references | Sommer U, Lengfellner K (2008) Climate change and the timing, magnitude, and composition of the phytoplankton spring bloom. Glob Chang Biol 14:1199–1120 | es_ES |
dc.description.references | Sournia A (1978) Phytoplankton manual. Monographs on oceanographic methodology. UNESCO | es_ES |
dc.description.references | Spanish Ministry of Agriculture, Fisheries and the Environment (2018) http://www.marm.es/siar/Informacion.asp . Accessed May 2018 | es_ES |
dc.description.references | Treguer P, Le Corre P (1975) Manuel d’analyse des nutritifs dans l’eau de mer. Université de Bretagne Occidentale, Brest | es_ES |
dc.description.references | Vargo GA (1978) Using a fluorescence microscope. In: Sournia A (ed) Phytoplankton manual. MG Oceanography Metodology. UNESCO: 108–112 | es_ES |
dc.description.references | Winder M, Cloern JE (2010) The annual cycles of phytoplankton biomass. Philos Trans R Soc B 365:3215–3226 | es_ES |