- -

Long-term study of seasonal changes in phytoplankton community structure in the western Mediterranean (Valencian Community)

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Long-term study of seasonal changes in phytoplankton community structure in the western Mediterranean (Valencian Community)

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Paches Giner, Maria Aguas Vivas es_ES
dc.contributor.author Aguado García, Daniel es_ES
dc.contributor.author Martínez-Guijarro, Mª Remedios es_ES
dc.contributor.author Romero Gil, Inmaculada es_ES
dc.date.accessioned 2019-05-31T20:42:38Z
dc.date.available 2019-05-31T20:42:38Z
dc.date.issued 2019 es_ES
dc.identifier.issn 0944-1344 es_ES
dc.identifier.uri http://hdl.handle.net/10251/121350
dc.description.abstract [EN] Ecosystem-based management is one of the strategies to protect the coastal areas. One of the key elements is phytoplankton community composition since it represents a good indicator of anthropogenic pressures. This identifies the seasonal patterns of phytoplankton, and its alterations by the stress factors induced by human activities are highly valuable. This research represents the first attempt to study that 476 km of western Mediterranean coastal belongs to the Valencian Community (Spain) based on the phytoplankton composition approach. The water samples during a 5-year period (6757 water samples) were taken to determine its phytoplankton group¿s dynamics and its relationship with anthropogenic stressors by means of a series of plots and statistical analyses. Diatoms are the group that most contribute to the whole community composition with two periods of maximum abundance. The Prasinophyceae and Cryptophyceae show unimodal patterns varying its maximum values depending on the season. The picocyanobacteria group exhibited the clearest and bestdefined pattern. Other groups have no clear seasonal pattern and become abundant in areas of higher anthropogenic pressure. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Environmental Science and Pollution Research es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Mediterranean Sea es_ES
dc.subject Phytoplankton es_ES
dc.subject Seasonality es_ES
dc.subject Anthropogenic pressure es_ES
dc.subject.classification TECNOLOGIA DEL MEDIO AMBIENTE es_ES
dc.title Long-term study of seasonal changes in phytoplankton community structure in the western Mediterranean (Valencian Community) es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s11356-019-04660-x es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient es_ES
dc.description.bibliographicCitation Paches Giner, MAV.; Aguado García, D.; Martínez-Guijarro, MR.; Romero Gil, I. (2019). Long-term study of seasonal changes in phytoplankton community structure in the western Mediterranean (Valencian Community). Environmental Science and Pollution Research. 26(14):14266-14276. https://doi.org/10.1007/s11356-019-04660-x es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s11356-019-04660-x es_ES
dc.description.upvformatpinicio 14266 es_ES
dc.description.upvformatpfin 14276 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 26 es_ES
dc.description.issue 14 es_ES
dc.relation.pasarela S\381114 es_ES
dc.description.references Alvain S, Moulin C, Dandonneau Y, Loisel H (2008) Seasonal distribution and succession of dominant phytoplankton groups in the global ocean: a satellite view. Glob Biogeochem Cycles 22:GB3001. https://doi.org/10.1029/2007GB003154 es_ES
dc.description.references Boyd PW, Rynearson TA, Armstrong EA, Fu F, Hayashi K, Hu Z, Hutchins DA, Kudela RM, Litchman E, Mulholland MR, Passow U, Strzepek RF, Whittaker KA, Yu E, Thomas MK (2013) Marine phytoplankton temperature versus growth responses from polar to tropical waters – outcome of a scientific community-wide study. PLoS One 8(5):e63091. https://doi.org/10.1371/journal.pone.0063091 es_ES
dc.description.references Buitenhuis E, Li WKW, Vaulot D, Lomas MW, Landry MR, Partensky F, Karl DM, Ulloa O, Campbell L, Jacquet S, Lantoine F, Chavez F, Macias D, Gosselin M, McManus GB (2012) Picophytoplankton biomass distribution in the global ocean. Earth Syst Sci Data 4:37–46 es_ES
dc.description.references Casas B, Varela M, Canle M, González N, Bodea A (1997) Seasonal variations of nutrients, seston and phytoplankton, and upwelling intensity off La Coruña (NW Spain). Estuar Coast Shelf Sci 44:767–778 es_ES
dc.description.references Cerino F, Zingone A (2006) A survey of cryptomonad diversity and seasonality at a coastal Mediterranean site. Eur J Phycol 41:363–378 es_ES
dc.description.references Chen B, Liu H (2010) Relationships between phytoplankton growth and cell size in surface oceans: interactive effects of temperature, nutrients, and grazing. Limnol Oceanogr 55:965–972 es_ES
dc.description.references Chisholm SW (1992) Phytoplankton size. In: Falkowski PG, Woodhead AD, Vivirito K (eds) Primary productivity and biogeochemical cycles in the sea. Springer, Boston es_ES
dc.description.references Claudet J, Fraschetti S (2010) Human-driven impacts on marine habitats: a regional meta-analysis in the Mediterranean Sea. Biol Conserv 143:2195–2206 es_ES
dc.description.references Cloern JE, Foster SQ, Kleckner AE (2014) Phytoplankton primary production in the world’s estuarine-coastal. Biogeosciences 11:2477–2501. https://doi.org/10.5194/bg-11-2477-2014 es_ES
dc.description.references Díez B, Pedrós-Alió C, Marsh TL, Massana R (2001) Application of denaturing gradient gel electrophoresis (DGGE) to study the diversity of marine picoeukaryotic assemblages and comparison of DGGE with other molecular techniques. Appl Environ Microbiol 67:2942–2951 es_ES
dc.description.references Edwards M, Richardson AJ (2004) Impact of climate change on marine pelagic phenology and trophic mismatch. Nature 430:881–884 es_ES
dc.description.references Falkowski PG, Barber RT, Smetacek V (1998) Biogeochemical controls and feedbacks on ocean primary production. Science 281:200–206 es_ES
dc.description.references Hair JE, Anderson RE, Tatham RL, Black WC (2006) Multivariate data analysis, 5th edn. Prentice Hall, Upper Saddle River es_ES
dc.description.references Hoef-Emden K (2014) Osmotolerance in the Cryptophyceae: jacks-of-all trades in the Chroomonas clade. Protist. 165:123–143 es_ES
dc.description.references Jones RI (2000) Mixotrophy in planktonic protists: an overview. Freshw Biol 45:219–226 es_ES
dc.description.references Kaiser H (1974) An index of factorial simplicity. Psychometrika 39:31–36 es_ES
dc.description.references Kirkwood D, Aminot A, Pertillä M (1991) Report on the results of the fourth intercomparison exercise for nutrients in sea water. ICES Cooperative Research Report, n°174 es_ES
dc.description.references Lejeusne C, Chevaldonne P, Pergent-Martini C, Boudouresque CF, Perez T (2010) Climate change effects on a miniature ocean: the highly diverse, highly impacted Mediterranean Sea. Trends Ecol Evol 25:250–260 es_ES
dc.description.references Lepistö L, Holopainen A (2003) Occurrence of Cryptophyceae and katablepharids in boreal lakes. Hydrobiologia 502:307–310 es_ES
dc.description.references Litchman E, Klausmeier CA (2008) Trait-based community ecology of phytoplankton. Annu Rev Ecol Evol Syst 39:615–639 es_ES
dc.description.references Lund JWG, Kipling C, Le Cren ED (1958) The inverted microscope method of estimating algal numbers and the statistical basis of estimations by counting. Hydrobiologia 11:143–170 es_ES
dc.description.references Marie D, Zhu F, Balaguer V, Ras J, Vaulot D (2006) Eukaryotic picoplankton communities of the Mediterranean Sea in summer assessed by molecular approaches (DGGE, TTGE, QPCR). FEMS Microbiol Ecol 55:403–415 es_ES
dc.description.references Micheli F, Halpern B, Walbridge S, Ciriaco S, Ferretti F, Fraschetti S, Lewison R, Nykjaer L, Rosenberg AA (2013) Cumulative human impacts on Mediterranean and Black Sea marine ecosystems: assessing current pressures and opportunities. PLoS One 8(12):e79889. https://doi.org/10.1371/journal.pone.0079889 es_ES
dc.description.references Moisan JR, Moisan TA, Abbot MR (2002) Modelling the effect of temperature on the maximum growth rates of phytoplankton populations. Ecol Model 153:197–215 es_ES
dc.description.references Morán XAG (2007) Annual cycle of picophytoplankton photosynthesis and growth rates in a temperate coastal ecosystem: a major contribution to carbon fluxes. Aquat Microb Ecol 49:267–279 es_ES
dc.description.references Niemi G, Wardrop D, Brooks R, Anderson S, Brady V, Paerl H, Rakocinski C, Brouwer M, Levinson B, McDonald M (2004) Rationale for a new generation of indicators for coastal waters. Environ Health Perspect 112:979–986 es_ES
dc.description.references Pachés M, Romero I, Hermosilla Z, Martínez-Guijarro R (2012) Phymed: an ecological classification system for the water framework directive based on phytoplankton community composition. Ecol Indic 19:15–23 es_ES
dc.description.references Palenik B, Grimwoodc J, Aerts A, Rouzé P, Salamov A, Putnam N (2007) The tiny eukaryote Ostreococcus provides genomic insights into the paradox of plankton speciation. Proc Natl Acad Sci U S A 104:7705–7710 es_ES
dc.description.references Parsons TR, Maita Y, Lalli CM (1984) A manual of chemical and biological methods for seawater analysis. Pergamon Press, London es_ES
dc.description.references Reynolds CS (2006) The ecology of phytoplankton. Cambridge University Press, Cambridge es_ES
dc.description.references Reynolds CS, Huszar V, Kruk C, Naselli-Flores L, Melo S (2002) Towards a functional classification of the freshwater phytoplankton. J Plankton Res 24:417–428. https://doi.org/10.1093/plankt/24.5.417 es_ES
dc.description.references Ribera d’Alcalà M, Conversano F, Corato F, Licandro P, Mangoni O, Marino D, Mazzocchi MG, Modigh M, Montresor M, Nardella M, Saggiomo V, Sarno D, Zingone A (2004) Seasonal patterns in plankton communities in a pluriannual time series at a coastal Mediterranean site (gulf on Naples): an attempt to discern recurrences and trends. Sci Mar 68:65–83 es_ES
dc.description.references Romero I, Pachés M, Martínez-Guijarro R, Ferrer J (2013) Glophymed: an index to establish the ecological status for the water framework directive based on phytoplankton in coastal waters. Mar Pollut Bull 75:218–223. https://doi.org/10.1016/j.marpolbul.2013.07.028 es_ES
dc.description.references Sammartino M, Di Cicco A, Marullo S, Santoleri R (2015) Spatio-temporal variability of micro-, nano- and pico-phytoplankton in the Mediterranean Sea from satellite ocean colour data of SeaWiFS. Ocean Sci 11:759–778. https://doi.org/10.5194/os-11-759-2015 es_ES
dc.description.references Smayda TJ (1980) Phytoplankton succession. In: Morris I (ed) Physiological ecology of phytoplankton, studies in ecology. Blackwell, Oxford, pp 493–570 es_ES
dc.description.references Sommer U, Lengfellner K (2008) Climate change and the timing, magnitude, and composition of the phytoplankton spring bloom. Glob Chang Biol 14:1199–1120 es_ES
dc.description.references Sournia A (1978) Phytoplankton manual. Monographs on oceanographic methodology. UNESCO es_ES
dc.description.references Spanish Ministry of Agriculture, Fisheries and the Environment (2018) http://www.marm.es/siar/Informacion.asp . Accessed May 2018 es_ES
dc.description.references Treguer P, Le Corre P (1975) Manuel d’analyse des nutritifs dans l’eau de mer. Université de Bretagne Occidentale, Brest es_ES
dc.description.references Vargo GA (1978) Using a fluorescence microscope. In: Sournia A (ed) Phytoplankton manual. MG Oceanography Metodology. UNESCO: 108–112 es_ES
dc.description.references Winder M, Cloern JE (2010) The annual cycles of phytoplankton biomass. Philos Trans R Soc B 365:3215–3226 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem