Mostrar el registro sencillo del ítem
dc.contributor.author | Safont Armero, Gonzalo | es_ES |
dc.contributor.author | Salazar Afanador, Addisson | es_ES |
dc.contributor.author | Vergara Domínguez, Luís | es_ES |
dc.contributor.author | Gomez, Enriqueta | es_ES |
dc.contributor.author | Villanueva, Vicente | es_ES |
dc.date.accessioned | 2019-05-31T20:42:52Z | |
dc.date.available | 2019-05-31T20:42:52Z | |
dc.date.issued | 2018 | es_ES |
dc.identifier.issn | 2162-237X | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/121355 | |
dc.description | © 2018 IEEE. Personal use of this material is permitted. Permissíon from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertisíng or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. | |
dc.description.abstract | [EN] Independent component analysis (ICA) is a blind source separation technique where data are modeled as linear combinations of several independent non-Gaussian sources. The independence and linear restrictions are relaxed using several ICA mixture models (ICAMM) obtaining a two-layer artificial neural network structure. This allows for dependence between sources of different classes, and thus a myriad of multidimensional probability density functions (PDFs) can be accurate modeled. This paper proposes a new probabilistic distance (PDI) between the parameters learned for two ICA mixture models. The PDI is computed explicitly, unlike the popular Kullback-Leibler divergence (KLD) and other similar metrics, removing the need for numerical integration. Furthermore, the PDI is symmetric and bounded within 0 and 1, which enables its use as a posterior probability in fusion approaches. In this work, the PDI is employed for change detection by measuring the distance between two ICA mixture models learned in consecutive time windows. The changes might be associated with relevant states from a process under analysis that are explicitly reflected in the learned ICAMM parameters. The proposed distance was tested in two challenging applications using simulated and real data: (i) detecting flaws in materials using ultrasounds and (ii) detecting changes in electroencephalography signals from humans performing neuropsychological tests. The results demonstrate that the PDI outperforms the KLD in change-detection capabilities | es_ES |
dc.description.sponsorship | This work was supported by the Spanish Administration and European Union under grant TEC2014-58438-R, and Generalitat Valenciana under Grant PROMETEO II/2014/032 and Grant GV/2014/034. | |
dc.language | Inglés | es_ES |
dc.publisher | Institute of Electrical and Electronics Engineers | es_ES |
dc.relation.ispartof | IEEE Transactions on Neural Networks and Learning Systems | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Change detection, Electroencephalographic (EEG) | es_ES |
dc.subject | Machine learning | es_ES |
dc.subject | Independent component analysis (ICA) | es_ES |
dc.subject | Probabilistic distance | es_ES |
dc.subject.classification | TEORIA DE LA SEÑAL Y COMUNICACIONES | es_ES |
dc.title | Probabilistic Distance for Mixtures of Independent Component Analyzers | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1109/TNNLS.2017.2663843 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//TEC2014-58438-R/ES/PROCESADO DE SEÑAL SOBRE GRAFOS PARA SISTEMAS CLASIFICADORES: APLICACION EN SALUD, ENERGIA Y SEGURIDAD/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2014%2F032/ES/TÉCNICAS AVANZADAS DE FUSIÓN EN TRATAMIENTO DE SEÑALES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//GV%2F2014%2F034/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia | es_ES |
dc.description.bibliographicCitation | Safont Armero, G.; Salazar Afanador, A.; Vergara Domínguez, L.; Gomez, E.; Villanueva, V. (2018). Probabilistic Distance for Mixtures of Independent Component Analyzers. IEEE Transactions on Neural Networks and Learning Systems. 29(4):1161-1173. https://doi.org/10.1109/TNNLS.2017.2663843 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://doi.org/10.1109/TNNLS.2017.2663843 | es_ES |
dc.description.upvformatpinicio | 1161 | es_ES |
dc.description.upvformatpfin | 1173 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 29 | es_ES |
dc.description.issue | 4 | es_ES |
dc.identifier.pmid | 28252412 | |
dc.relation.pasarela | S\377112 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Ministerio de Economía y Empresa | es_ES |