- -

Probabilistic Distance for Mixtures of Independent Component Analyzers

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Probabilistic Distance for Mixtures of Independent Component Analyzers

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Safont Armero, Gonzalo es_ES
dc.contributor.author Salazar Afanador, Addisson es_ES
dc.contributor.author Vergara Domínguez, Luís es_ES
dc.contributor.author Gomez, Enriqueta es_ES
dc.contributor.author Villanueva, Vicente es_ES
dc.date.accessioned 2019-05-31T20:42:52Z
dc.date.available 2019-05-31T20:42:52Z
dc.date.issued 2018 es_ES
dc.identifier.issn 2162-237X es_ES
dc.identifier.uri http://hdl.handle.net/10251/121355
dc.description © 2018 IEEE. Personal use of this material is permitted. Permissíon from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertisíng or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
dc.description.abstract [EN] Independent component analysis (ICA) is a blind source separation technique where data are modeled as linear combinations of several independent non-Gaussian sources. The independence and linear restrictions are relaxed using several ICA mixture models (ICAMM) obtaining a two-layer artificial neural network structure. This allows for dependence between sources of different classes, and thus a myriad of multidimensional probability density functions (PDFs) can be accurate modeled. This paper proposes a new probabilistic distance (PDI) between the parameters learned for two ICA mixture models. The PDI is computed explicitly, unlike the popular Kullback-Leibler divergence (KLD) and other similar metrics, removing the need for numerical integration. Furthermore, the PDI is symmetric and bounded within 0 and 1, which enables its use as a posterior probability in fusion approaches. In this work, the PDI is employed for change detection by measuring the distance between two ICA mixture models learned in consecutive time windows. The changes might be associated with relevant states from a process under analysis that are explicitly reflected in the learned ICAMM parameters. The proposed distance was tested in two challenging applications using simulated and real data: (i) detecting flaws in materials using ultrasounds and (ii) detecting changes in electroencephalography signals from humans performing neuropsychological tests. The results demonstrate that the PDI outperforms the KLD in change-detection capabilities es_ES
dc.description.sponsorship This work was supported by the Spanish Administration and European Union under grant TEC2014-58438-R, and Generalitat Valenciana under Grant PROMETEO II/2014/032 and Grant GV/2014/034.
dc.language Inglés es_ES
dc.publisher Institute of Electrical and Electronics Engineers es_ES
dc.relation.ispartof IEEE Transactions on Neural Networks and Learning Systems es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Change detection, Electroencephalographic (EEG) es_ES
dc.subject Machine learning es_ES
dc.subject Independent component analysis (ICA) es_ES
dc.subject Probabilistic distance es_ES
dc.subject.classification TEORIA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.title Probabilistic Distance for Mixtures of Independent Component Analyzers es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1109/TNNLS.2017.2663843 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TEC2014-58438-R/ES/PROCESADO DE SEÑAL SOBRE GRAFOS PARA SISTEMAS CLASIFICADORES: APLICACION EN SALUD, ENERGIA Y SEGURIDAD/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2014%2F032/ES/TÉCNICAS AVANZADAS DE FUSIÓN EN TRATAMIENTO DE SEÑALES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//GV%2F2014%2F034/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia es_ES
dc.description.bibliographicCitation Safont Armero, G.; Salazar Afanador, A.; Vergara Domínguez, L.; Gomez, E.; Villanueva, V. (2018). Probabilistic Distance for Mixtures of Independent Component Analyzers. IEEE Transactions on Neural Networks and Learning Systems. 29(4):1161-1173. https://doi.org/10.1109/TNNLS.2017.2663843 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.org/10.1109/TNNLS.2017.2663843 es_ES
dc.description.upvformatpinicio 1161 es_ES
dc.description.upvformatpfin 1173 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 29 es_ES
dc.description.issue 4 es_ES
dc.identifier.pmid 28252412
dc.relation.pasarela S\377112 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Ministerio de Economía y Empresa es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem