- -

Experimental Phantom-Based Security Analysis for Next-Generation Leadless Cardiac Pacemakers

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Experimental Phantom-Based Security Analysis for Next-Generation Leadless Cardiac Pacemakers

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Awan, Muhammad Faheem es_ES
dc.contributor.author Perez-Simbor, Sofia es_ES
dc.contributor.author Garcia-Pardo, Concepcion es_ES
dc.contributor.author Kansanen, Kimmo es_ES
dc.contributor.author Cardona Marcet, Narciso es_ES
dc.date.accessioned 2019-05-31T20:45:00Z
dc.date.available 2019-05-31T20:45:00Z
dc.date.issued 2018 es_ES
dc.identifier.uri http://hdl.handle.net/10251/121383
dc.description.abstract [EN] With technological advancement, implanted medical devices can treat a wide range of chronic diseases such as cardiac arrhythmia, deafness, diabetes, etc. Cardiac pacemakers are used to maintain normal heart rhythms. The next generation of these pacemakers is expected to be completely wireless, providing new security threats. Thus, it is critical to secure pacemaker transmissions between legitimate nodes from a third party or an eavesdropper. This work estimates the eavesdropping risk and explores the potential of securing transmissions between leadless capsules inside the heart and the subcutaneous implant under the skin against external eavesdroppers by using physical-layer security methods. In this work, we perform phantom experiments to replicate the dielectric properties of the human heart, blood, and fat for channel modeling between in-body-to-in-body devices and from in-body-to-off-body scenario. These scenarios reflect the channel between legitimate nodes and that between a legitimate node and an eavesdropper. In our case, a legitimate node is a leadless cardiac pacemaker implanted in the right ventricle of a human heart transmitting to a legitimate receiver, which is a subcutaneous implant beneath the collar bone under the skin. In addition, a third party outside the body is trying to eavesdrop the communication. The measurements are performed for ultrawide band (UWB) and industrial, scientific, and medical (ISM) frequency bands. By using these channel models, we analyzed the risk of using the concept of outage probability and determine the eavesdropping range in the case of using UWB and ISM frequency bands. Furthermore, the probability of positive secrecy capacity is also determined, along with outage probability of a secrecy rate, which are the fundamental parameters in depicting the physical-layer security methods. Here, we show that path loss follows a log-normal distribution. In addition, for the ISM frequency band, the probability of successful eavesdropping for a data rate of 600 kbps (Electromyogram (EMG)) is about 97.68% at an eavesdropper distance of 1.3 m and approaches 28.13% at an eavesdropper distance of 4.2 m, whereas for UWB frequency band the eavesdropping risk approaches 0.2847% at an eavesdropper distance of 0.22 m. Furthermore, the probability of positive secrecy capacity is about 44.88% at eavesdropper distance of 0.12 m and approaches approximately 97% at an eavesdropper distance of 0.4 m for ISM frequency band, whereas for UWB, the same statistics are 96.84% at 0.12 m and 100% at 0.4 m. Moreover, the outage probability of secrecy capacity is also determined by using a fixed secrecy rate. es_ES
dc.description.sponsorship This work was supported by the Marie Curie Research Grants Scheme, with project grant no 675353, EU Horizon 2020-WIBEC ITN 00 (Wireless In-Body Environment). Details can be found at a source https://cordis.europa.eu/project/rcn/198286_en.html. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Sensors es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Implanted medical devices es_ES
dc.subject Wireless leadless cardiac pacemaker es_ES
dc.subject WBAN es_ES
dc.subject Security and privacy es_ES
dc.subject Physical-layer security es_ES
dc.subject Phantom experiments es_ES
dc.subject Channel modeling es_ES
dc.subject.classification TEORIA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.title Experimental Phantom-Based Security Analysis for Next-Generation Leadless Cardiac Pacemakers es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/s18124327 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/675353/EU/Wireless In-Body Environment/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.description.bibliographicCitation Awan, MF.; Perez-Simbor, S.; Garcia-Pardo, C.; Kansanen, K.; Cardona Marcet, N. (2018). Experimental Phantom-Based Security Analysis for Next-Generation Leadless Cardiac Pacemakers. Sensors. 18(12):1-24. https://doi.org/10.3390/s18124327 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.org/10.3390/s18124327 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 24 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 18 es_ES
dc.description.issue 12 es_ES
dc.identifier.eissn 1424-8220 es_ES
dc.identifier.pmid 30544594
dc.identifier.pmcid PMC6308590
dc.relation.pasarela S\373749 es_ES
dc.contributor.funder European Commission es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem