Mostrar el registro sencillo del ítem
dc.contributor.author | Belda, Jordi | es_ES |
dc.contributor.author | Vergara Domínguez, Luís | es_ES |
dc.contributor.author | Salazar Afanador, Addisson | es_ES |
dc.contributor.author | Safont Armero, Gonzalo | es_ES |
dc.date.accessioned | 2019-05-31T20:45:43Z | |
dc.date.available | 2019-05-31T20:45:43Z | |
dc.date.issued | 2018 | es_ES |
dc.identifier.issn | 0165-1684 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/121393 | |
dc.description.abstract | [EN] Recent works in signal processing on graphs have been driven to estimate the precision matrix and to use it as the graph Laplacian matrix. The normalized elements of the precision matrix are the partial correlation coefficients which measure the pairwise conditional linear dependencies of the graph. However, the non-linear dependencies inherent in any non-Gaussian model cannot be captured. We propose in this paper a generalized partial correlation coefficient which is derived by assuming an underlying multivariate Gaussian Mixture Model of the observations. Exact and approximate methods are proposed to estimate the generalized partial correlation coefficients from estimates of the Gaussian Mixture Model parameters. Thus it may find application in any non-Gaussian scenario where the Laplacian matrix is to be learned from training signals. (C) 2018 Elsevier B.V. All rights reserved. | es_ES |
dc.description.sponsorship | This work was supported by Spanish Administration (Ministerio de Economia y Competitividad) and European Union (FEDER) under grant TEC2014-58438-R, and Generalitat Valenciana under grant PROMETEO II/2014/032. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Signal Processing | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject.classification | TEORIA DE LA SEÑAL Y COMUNICACIONES | es_ES |
dc.title | Estimating the Laplacian matrix of Gaussian mixtures for signal processing on graphs | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.sigpro.2018.02.017 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2014%2F032/ES/TÉCNICAS AVANZADAS DE FUSIÓN EN TRATAMIENTO DE SEÑALES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//TEC2014-58438-R/ES/PROCESADO DE SEÑAL SOBRE GRAFOS PARA SISTEMAS CLASIFICADORES: APLICACION EN SALUD, ENERGIA Y SEGURIDAD/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions | es_ES |
dc.description.bibliographicCitation | Belda, J.; Vergara Domínguez, L.; Salazar Afanador, A.; Safont Armero, G. (2018). Estimating the Laplacian matrix of Gaussian mixtures for signal processing on graphs. Signal Processing. 148:241-249. https://doi.org/10.1016/j.sigpro.2018.02.017 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://doi.org/10.1016/j.sigpro.2018.02.017 | es_ES |
dc.description.upvformatpinicio | 241 | es_ES |
dc.description.upvformatpfin | 249 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 148 | es_ES |
dc.relation.pasarela | S\366685 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Ministerio de Economía y Empresa | es_ES |