Mostrar el registro sencillo del ítem
dc.contributor.author | El-Fakharany, Mohamed | es_ES |
dc.contributor.author | Egorova, Vera | es_ES |
dc.contributor.author | Company Rossi, Rafael | es_ES |
dc.date.accessioned | 2019-06-01T20:01:23Z | |
dc.date.available | 2019-06-01T20:01:23Z | |
dc.date.issued | 2018 | es_ES |
dc.identifier.issn | 0377-0427 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/121416 | |
dc.description.abstract | [EN] In this work a finite difference approach together with a bivariate Gauss¿Hermite quadrature technique is developed for partial-integro differential equations related to option pricing problems on two underlying asset driven by jump-diffusion models. Firstly, the mixed derivative term is removed using a suitable transformation avoiding numerical drawbacks such as slow convergence and inaccuracy due to the appearance of spurious oscillations. Unlike the more traditional truncation approach we use 2D Gauss¿Hermite quadrature with the additional advantage of saving computational cost. The explicit finite difference scheme becomes consistent, conditionally stable and positive. European and American option cases are treated. Numerical results are illustrated and analyzed with experiments and comparisons with other well recognized methods. | es_ES |
dc.description.sponsorship | This work has been partially supported by the European Union in the FP7-PEOPLE-2012-ITN program under Grant Agreement Number 304617 (FP7 Marie Curie Action, Project Multi-ITN STRIKE-Novel Methods in Computational Finance) and the Ministerio de Economia y Competitividad Spanish grant MTM2013-41765-P. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Journal of Computational and Applied Mathematics | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Two-asset option pricing | es_ES |
dc.subject | Partial-integro differential equation | es_ES |
dc.subject | Jump-diffusion models | es_ES |
dc.subject | Numerical analysis | es_ES |
dc.subject | Bivariate Gauss Hermite quadrature | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Numerical valuation of two-asset options under jump diffusion models using Gauss Hermite quadrature | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.cam.2017.03.032 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MTM2013-41765-P/ES/METODOS COMPUTACIONALES PARA ECUACIONES DIFERENCIALES ALEATORIAS: TEORIA Y APLICACIONES/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Matemática Multidisciplinar - Institut Universitari de Matemàtica Multidisciplinària | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | El-Fakharany, M.; Egorova, V.; Company Rossi, R. (2018). Numerical valuation of two-asset options under jump diffusion models using Gauss Hermite quadrature. Journal of Computational and Applied Mathematics. 330:822-834. https://doi.org/10.1016/j.cam.2017.03.032 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://doi.org/10.1016/j.cam.2017.03.032 | es_ES |
dc.description.upvformatpinicio | 822 | es_ES |
dc.description.upvformatpfin | 834 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 330 | es_ES |
dc.relation.pasarela | S\345190 | es_ES |
dc.contributor.funder | European Commission | es_ES |
dc.contributor.funder | Ministerio de Economía, Industria y Competitividad | es_ES |