- -

Consistent Clustering of Elements in Large Pairwise Comparison Matrices

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Consistent Clustering of Elements in Large Pairwise Comparison Matrices

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Benítez López, Julio es_ES
dc.contributor.author Carpitella, Silvia es_ES
dc.contributor.author Certa, A. es_ES
dc.contributor.author Ilaya-Ayza, Amilkar Ernesto es_ES
dc.contributor.author Izquierdo Sebastián, Joaquín es_ES
dc.date.accessioned 2019-06-01T20:01:26Z
dc.date.available 2019-06-01T20:01:26Z
dc.date.issued 2018 es_ES
dc.identifier.issn 0377-0427 es_ES
dc.identifier.uri http://hdl.handle.net/10251/121417
dc.description.abstract [EN] In multi-attribute decision making the number of decision elements under consideration may be huge, especially for complex, real-world problems. Typically these elements are clustered and then the clusters organized hierarchically to reduce the number of elements to be simultaneously handled. These decomposition methodologies are intended to bring the problem within the cognitive ability of decision makers. However, such methodologies have disadvantages, and it may happen that such a priori clustering is not clear, and/or the problem has previously been addressed without any grouping action. This is the situation for the case study we address, in which a panel of experts gives opinions about the operation of 15 previously established district metered areas in a real water distribution system. Large pairwise comparison matrices may also be found when building comparisons of elements using large bodies of information. In this paper, we address a consistent compression of an AHP comparison matrix that collapses the judgments corresponding to a given number of compared elements. As a result, an a posteriori clustering of various elements becomes possible. In our case study, such a clustering offers several added benefits, including the identification of hidden or unknown criteria to cluster the considered elements of the problem. (C) 2018 Elsevier B.V. All rights reserved. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Journal of Computational and Applied Mathematics es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Pairwise comparison es_ES
dc.subject AHP es_ES
dc.subject Miller's magic number seven es_ES
dc.subject Water distribution system (WDS) es_ES
dc.subject Management and operation of a WDS es_ES
dc.subject Decision-making es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Consistent Clustering of Elements in Large Pairwise Comparison Matrices es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.cam.2018.04.041 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Benítez López, J.; Carpitella, S.; Certa, A.; Ilaya-Ayza, AE.; Izquierdo Sebastián, J. (2018). Consistent Clustering of Elements in Large Pairwise Comparison Matrices. Journal of Computational and Applied Mathematics. 343:98-112. https://doi.org/10.1016/j.cam.2018.04.041 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.org/10.1016/j.cam.2018.04.041 es_ES
dc.description.upvformatpinicio 98 es_ES
dc.description.upvformatpfin 112 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 343 es_ES
dc.relation.pasarela S\361587 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem