- -

Solving random mean square fractional linear differential equations by generalized power series: analysis and computing

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Solving random mean square fractional linear differential equations by generalized power series: analysis and computing

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Burgos-Simon, Clara es_ES
dc.contributor.author Cortés, J.-C. es_ES
dc.contributor.author Villafuerte, Laura es_ES
dc.contributor.author Villanueva Micó, Rafael Jacinto es_ES
dc.date.accessioned 2019-06-02T20:01:00Z
dc.date.available 2019-06-02T20:01:00Z
dc.date.issued 2018 es_ES
dc.identifier.issn 0377-0427 es_ES
dc.identifier.uri http://hdl.handle.net/10251/121429
dc.description.abstract [EN] This paper deals with solving the general random (Caputo) fractional linear differential equation under general assumptions on random input data (initial condition, forcing term and diffusion coefficient). Our contribution extends, in two directions, the results presented in a recent contribution by the authors. In that paper, a mean square random generalized power series solution has been constructed in the case that the fractional order, say alpha, of the Caputo derivative lies on the interval ]0, 1] and assuming that the diffusion coefficient belongs to a class, C, of random variables that contains all bounded random variables. However, significant families of unbounded random variables, such as Gaussian and Exponential, for example, do not fall into class C. Now, in this contribution we first enlarge the class of random variables to which the diffusion coefficient belongs and we prove that the constructed random generalized power series solution is mean square convergent too. We show that any bounded random variable and important unbounded random variables, including Gaussian and Exponential ones, are allowed to play the role of the diffusion coefficient as well. Secondly, we construct a mean square random generalized power series solution in the case that alpha parameter lies on the larger interval ]0, 2]. As a consequence, the results established in our previous contribution are fairly generalized. It is particularly enlightening, the numerical study of the convergence of the approximations to the mean and the standard deviation of the solution stochastic process in terms of alpha parameter and on the type of the probability distribution chosen for the diffusion coefficient. (C) 2018 Elsevier B.V. All rights reserved. es_ES
dc.description.sponsorship This work has been partially supported by the Ministerio de Economia, Industria y Competitividad grant MTM2017-89664-P. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Journal of Computational and Applied Mathematics es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Random linear fractional differential equation es_ES
dc.subject Random mean square convergence es_ES
dc.subject Random mean square Caputo fractional derivative es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Solving random mean square fractional linear differential equations by generalized power series: analysis and computing es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.cam.2017.12.042 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MTM2017-89664-P/ES/PROBLEMAS DINAMICOS CON INCERTIDUMBRE SIMULABLE: MODELIZACION MATEMATICA, ANALISIS, COMPUTACION Y APLICACIONES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Matemática Multidisciplinar - Institut Universitari de Matemàtica Multidisciplinària es_ES
dc.description.bibliographicCitation Burgos-Simon, C.; Cortés, J.; Villafuerte, L.; Villanueva Micó, RJ. (2018). Solving random mean square fractional linear differential equations by generalized power series: analysis and computing. Journal of Computational and Applied Mathematics. 339:94-110. https://doi.org/10.1016/j.cam.2017.12.042 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.org/10.1016/j.cam.2017.12.042 es_ES
dc.description.upvformatpinicio 94 es_ES
dc.description.upvformatpfin 110 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 339 es_ES
dc.relation.pasarela S\349428 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem