Mostrar el registro sencillo del ítem
dc.contributor.author | Company Rossi, Rafael | es_ES |
dc.contributor.author | Egorova, Vera | es_ES |
dc.contributor.author | Jódar Sánchez, Lucas Antonio | es_ES |
dc.date.accessioned | 2019-06-02T20:01:14Z | |
dc.date.available | 2019-06-02T20:01:14Z | |
dc.date.issued | 2018 | es_ES |
dc.identifier.issn | 0377-0427 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/121432 | |
dc.description.abstract | [EN] The matter of the stability for multidimensional diffusion-advection-reaction problems treated with the semi-discretization method is remaining challenge because when all the stepsizes tend simultaneously to zero the involved size of the problem grows without bounds. Solution of such problems is constructed by starting with a semi-discretization approach followed by a full discretization using exponential time differencing and matrix quadrature rules. Analysis of the time variation of the numerical solution with respect to previous time level together with the use of logarithmic norm of matrices is the basis of the stability result. Sufficient stability conditions on stepsizes, that also guarantee positivity and boundedness of the solution, are found. Numerical examples in different fields prove its competitiveness with other relevant methods. (C) 2018 Elsevier B.V. All rights reserved. | es_ES |
dc.description.sponsorship | This work has been partially supported by the Ministerio de Economia y Competitividad Spanish grant MTM2017-89664-P. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Journal of Computational and Applied Mathematics | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Diffusion advection-reaction | es_ES |
dc.subject | Semi-discretization | es_ES |
dc.subject | Exponential time differencing | es_ES |
dc.subject | Finite difference | es_ES |
dc.subject | Numerical analysis | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Conditional full stability of positivity-preserving finite difference scheme for diffusion advection-reaction models | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.cam.2018.02.031 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MTM2017-89664-P/ES/PROBLEMAS DINAMICOS CON INCERTIDUMBRE SIMULABLE: MODELIZACION MATEMATICA, ANALISIS, COMPUTACION Y APLICACIONES/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Matemática Multidisciplinar - Institut Universitari de Matemàtica Multidisciplinària | es_ES |
dc.description.bibliographicCitation | Company Rossi, R.; Egorova, V.; Jódar Sánchez, LA. (2018). Conditional full stability of positivity-preserving finite difference scheme for diffusion advection-reaction models. Journal of Computational and Applied Mathematics. 341:157-168. https://doi.org/10.1016/j.cam.2018.02.031 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://doi.org/10.1016/j.cam.2018.02.031 | es_ES |
dc.description.upvformatpinicio | 157 | es_ES |
dc.description.upvformatpfin | 168 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 341 | es_ES |
dc.relation.pasarela | S\361516 | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |