- -

Conditional full stability of positivity-preserving finite difference scheme for diffusion advection-reaction models

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Conditional full stability of positivity-preserving finite difference scheme for diffusion advection-reaction models

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Company Rossi, Rafael es_ES
dc.contributor.author Egorova, Vera es_ES
dc.contributor.author Jódar Sánchez, Lucas Antonio es_ES
dc.date.accessioned 2019-06-02T20:01:14Z
dc.date.available 2019-06-02T20:01:14Z
dc.date.issued 2018 es_ES
dc.identifier.issn 0377-0427 es_ES
dc.identifier.uri http://hdl.handle.net/10251/121432
dc.description.abstract [EN] The matter of the stability for multidimensional diffusion-advection-reaction problems treated with the semi-discretization method is remaining challenge because when all the stepsizes tend simultaneously to zero the involved size of the problem grows without bounds. Solution of such problems is constructed by starting with a semi-discretization approach followed by a full discretization using exponential time differencing and matrix quadrature rules. Analysis of the time variation of the numerical solution with respect to previous time level together with the use of logarithmic norm of matrices is the basis of the stability result. Sufficient stability conditions on stepsizes, that also guarantee positivity and boundedness of the solution, are found. Numerical examples in different fields prove its competitiveness with other relevant methods. (C) 2018 Elsevier B.V. All rights reserved. es_ES
dc.description.sponsorship This work has been partially supported by the Ministerio de Economia y Competitividad Spanish grant MTM2017-89664-P. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Journal of Computational and Applied Mathematics es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Diffusion advection-reaction es_ES
dc.subject Semi-discretization es_ES
dc.subject Exponential time differencing es_ES
dc.subject Finite difference es_ES
dc.subject Numerical analysis es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Conditional full stability of positivity-preserving finite difference scheme for diffusion advection-reaction models es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.cam.2018.02.031 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MTM2017-89664-P/ES/PROBLEMAS DINAMICOS CON INCERTIDUMBRE SIMULABLE: MODELIZACION MATEMATICA, ANALISIS, COMPUTACION Y APLICACIONES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Matemática Multidisciplinar - Institut Universitari de Matemàtica Multidisciplinària es_ES
dc.description.bibliographicCitation Company Rossi, R.; Egorova, V.; Jódar Sánchez, LA. (2018). Conditional full stability of positivity-preserving finite difference scheme for diffusion advection-reaction models. Journal of Computational and Applied Mathematics. 341:157-168. https://doi.org/10.1016/j.cam.2018.02.031 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.org/10.1016/j.cam.2018.02.031 es_ES
dc.description.upvformatpinicio 157 es_ES
dc.description.upvformatpfin 168 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 341 es_ES
dc.relation.pasarela S\361516 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem