- -

Bimodal grating coupler design on SOI technology for mode division multiplexing at 1550 nm

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Bimodal grating coupler design on SOI technology for mode division multiplexing at 1550 nm

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author García-Rodríguez, David es_ES
dc.contributor.author Corral, Juan L. es_ES
dc.contributor.author Griol Barres, Amadeu es_ES
dc.contributor.author Llorente, Roberto es_ES
dc.date.accessioned 2019-06-07T20:03:43Z
dc.date.available 2019-06-07T20:03:43Z
dc.date.issued 2018 es_ES
dc.identifier.issn 1094-4087 es_ES
dc.identifier.uri http://hdl.handle.net/10251/121746
dc.description © 2018 Optical Society of America. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modifications of the content of this paper are prohibited
dc.description.abstract [EN] In this paper, we evaluate by means of simulation and experimentally the simultaneous coupling of the LP01x-LP11ax fiber modes and the TE0-TE1 nanophotonic SOI waveguide modes using a grating coupler for a two-mode fiber at 1550 nm. Both the grating width (ranging from 10 mu m to 15 mu m) and the grating vertical profile have been considered in the design procedure. The optimum design (14 mu m width and 609 nm grating period) has been selected in terms of coupling efficiency (both LP01x-TE0 and LP11ax-TE1), compactness and tolerance to lateral misalignments between fiber and coupler. The LP01x-TE0 and LP11ax-TE1 modes achieved coupling efficiencies of 49% and 45%, respectively. (C) 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement es_ES
dc.description.sponsorship Ministerio de Economia y Competitividad (MINECO/FEDER) (TEC2015-70858-C2-1-R, RTC-2014-2232-3) es_ES
dc.language Inglés es_ES
dc.publisher The Optical Society es_ES
dc.relation.ispartof Optics Express es_ES
dc.rights Reconocimiento - No comercial (by-nc) es_ES
dc.subject.classification TEORIA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.title Bimodal grating coupler design on SOI technology for mode division multiplexing at 1550 nm es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1364/OE.26.019445 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TEC2015-70858-C2-1-R/ES/TECNOLOGIA DE TRANSMISION OPTICA MEDIANTE MULTIPLEXACION MULTIDIMENSIONAL EN FIBRA MULTI-NUCLEO PARA REDES OPTICAS DE ACCESO Y DE TRANSPORTE CELULAR/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//RTC-2014-2232-3Q4618002BC.VALENCIANA/ES/NUEVO TECNOLOGÍA FOTONICA DE DETECCIÓN AVANZADA DE AIRE Y VAPOR DE AGUA EN FLUIDOS DE CENTRALES DE GENERACIÓN ELÉCTRICA PARA LA GESTIÓN EFICIENTE DE LOS RECURSOS ENERGÉTICOS-HIDRASENSE/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Tecnología Nanofotónica - Institut Universitari de Tecnologia Nanofotònica es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.description.bibliographicCitation García-Rodríguez, D.; Corral, JL.; Griol Barres, A.; Llorente, R. (2018). Bimodal grating coupler design on SOI technology for mode division multiplexing at 1550 nm. Optics Express. 26(15):19445-19455. https://doi.org/10.1364/OE.26.019445 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1364/OE.26.019445 es_ES
dc.description.upvformatpinicio 19445 es_ES
dc.description.upvformatpfin 19455 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 26 es_ES
dc.description.issue 15 es_ES
dc.identifier.pmid 30114116
dc.relation.pasarela S\366415 es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Richardson, D. J. (2016). New optical fibres for high-capacity optical communications. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 374(2062), 20140441. doi:10.1098/rsta.2014.0441 es_ES
dc.description.references Kasahara, M., Saitoh, K., Sakamoto, T., Hanzawa, N., Matsui, T., Tsujikawa, K., … Koshiba, M. (2013). Design of Few-Mode Fibers for Mode-Division Multiplexing Transmission. IEEE Photonics Journal, 5(6), 7201207-7201207. doi:10.1109/jphot.2013.2292365 es_ES
dc.description.references Chen, H., Sleiffer, V., Snyder, B., Kuschnerov, M., van Uden, R., Jung, Y., … Koonen, T. (2013). Demonstration of a Photonic Integrated Mode Coupler With MDM and WDM Transmission. IEEE Photonics Technology Letters, 25(21), 2039-2042. doi:10.1109/lpt.2013.2280669 es_ES
dc.description.references Sun, C., Yu, Y., Ye, M., Chen, G., & Zhang, X. (2016). An ultra-low crosstalk and broadband two-mode (de)multiplexer based on adiabatic couplers. Scientific Reports, 6(1). doi:10.1038/srep38494 es_ES
dc.description.references Xing, J., Li, Z., Xiao, X., Yu, J., & Yu, Y. (2013). Two-mode multiplexer and demultiplexer based on adiabatic couplers. Optics Letters, 38(17), 3468. doi:10.1364/ol.38.003468 es_ES
dc.description.references Garcia-Rodriguez, D., Corral, J. L., Griol, A., & Llorente, R. (2017). Dimensional variation tolerant mode converter/multiplexer fabricated in SOI technology for two-mode transmission at 1550  nm. Optics Letters, 42(7), 1221. doi:10.1364/ol.42.001221 es_ES
dc.description.references Garcia-Rodriguez, D., Corral, J. L., & Llorente, R. (2017). Mode Conversion for Mode Division Multiplexing at 850 nm in Standard SMF. IEEE Photonics Technology Letters, 29(11), 929-932. doi:10.1109/lpt.2017.2694605 es_ES
dc.description.references Zhang, Z., Hu, X., & Wang, J. (2015). On-chip optical mode exchange using tapered directional coupler. Scientific Reports, 5(1). doi:10.1038/srep16072 es_ES
dc.description.references Ding, Y., Xu, J., Da Ros, F., Huang, B., Ou, H., & Peucheret, C. (2013). On-chip two-mode division multiplexing using tapered directional coupler-based mode multiplexer and demultiplexer. Optics Express, 21(8), 10376. doi:10.1364/oe.21.010376 es_ES
dc.description.references Zanzi, A., Brimont, A., Griol, A., Sanchis, P., & Marti, J. (2016). Compact and low-loss asymmetrical multimode interference splitter for power monitoring applications. Optics Letters, 41(2), 227. doi:10.1364/ol.41.000227 es_ES
dc.description.references Hanzawa, N., Saitoh, K., Sakamoto, T., Matsui, T., Tsujikawa, K., Koshiba, M., & Yamamoto, F. (2013). Two-mode PLC-based mode multi/demultiplexer for mode and wavelength division multiplexed transmission. Optics Express, 21(22), 25752. doi:10.1364/oe.21.025752 es_ES
dc.description.references Lai, Y., Yu, Y., Fu, S., Xu, J., Shum, P. P., & Zhang, X. (2017). Efficient spot size converter for higher-order mode fiber-chip coupling. Optics Letters, 42(18), 3702. doi:10.1364/ol.42.003702 es_ES
dc.description.references Hatori, N., Shimizu, T., Okano, M., Ishizaka, M., Yamamoto, T., Urino, Y., … Arakawa, Y. (2014). A Hybrid Integrated Light Source on a Silicon Platform Using a Trident Spot-Size Converter. Journal of Lightwave Technology, 32(7), 1329-1336. doi:10.1109/jlt.2014.2304305 es_ES
dc.description.references Hanzawa, N., Saitoh, K., Sakamoto, T., Matsui, T., Tsujikawa, K., Koshiba, M., & Yamamoto, F. (2014). Mode multi/demultiplexing with parallel waveguide for mode division multiplexed transmission. Optics Express, 22(24), 29321. doi:10.1364/oe.22.029321 es_ES
dc.description.references Dai, D., & Mao, M. (2015). Mode converter based on an inverse taper for multimode silicon nanophotonic integrated circuits. Optics Express, 23(22), 28376. doi:10.1364/oe.23.028376 es_ES
dc.description.references Taillaert, D., Van Laere, F., Ayre, M., Bogaerts, W., Van Thourhout, D., Bienstman, P., & Baets, R. (2006). Grating Couplers for Coupling between Optical Fibers and Nanophotonic Waveguides. Japanese Journal of Applied Physics, 45(8A), 6071-6077. doi:10.1143/jjap.45.6071 es_ES
dc.description.references Lardenois, S., Pascal, D., Vivien, L., Cassan, E., Laval, S., Orobtchouk, R., … Mollard, L. (2003). Low-loss submicrometer silicon-on-insulator rib waveguides and corner mirrors. Optics Letters, 28(13), 1150. doi:10.1364/ol.28.001150 es_ES
dc.description.references Orobtchouk, R., Layadi, A., Gualous, H., Pascal, D., Koster, A., & Laval, S. (2000). High-efficiency light coupling in a submicrometric silicon-on-insulator waveguide. Applied Optics, 39(31), 5773. doi:10.1364/ao.39.005773 es_ES
dc.description.references Wohlfeil, B., Rademacher, G., Stamatiadis, C., Voigt, K., Zimmermann, L., & Petermann, K. (2016). A Two-Dimensional Fiber Grating Coupler on SOI for Mode Division Multiplexing. IEEE Photonics Technology Letters, 28(11), 1241-1244. doi:10.1109/lpt.2016.2514712 es_ES
dc.description.references Koonen, A. M. J., Haoshuo Chen, van den Boom, H. P. A., & Raz, O. (2012). Silicon Photonic Integrated Mode Multiplexer and Demultiplexer. IEEE Photonics Technology Letters, 24(21), 1961-1964. doi:10.1109/lpt.2012.2219304 es_ES
dc.description.references Ding, Y., Ou, H., Xu, J., & Peucheret, C. (2013). Silicon Photonic Integrated Circuit Mode Multiplexer. IEEE Photonics Technology Letters, 25(7), 648-651. doi:10.1109/lpt.2013.2247394 es_ES
dc.description.references Galan, J. V., Sanchis, P., Blasco, J., & Marti, J. (2008). Study of High Efficiency Grating Couplers for Silicon-Based Horizontal Slot Waveguides. IEEE Photonics Technology Letters, 20(12), 985-987. doi:10.1109/lpt.2008.923546 es_ES
dc.description.references Roelkens, G., Van Thourhout, D., & Baets, R. (2006). High efficiency Silicon-on-Insulator grating coupler based on a poly-Silicon overlay. Optics Express, 14(24), 11622. doi:10.1364/oe.14.011622 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem