- -

Homogenization towards a mechanistic Rigid Body and Spring Model (HRBSM) for the non-linear dynamic analysis of 3D masonry structures

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Homogenization towards a mechanistic Rigid Body and Spring Model (HRBSM) for the non-linear dynamic analysis of 3D masonry structures

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Bertolesi, Elisa es_ES
dc.contributor.author Milani, Gabriele es_ES
dc.contributor.author Casolo, Siro es_ES
dc.date.accessioned 2019-06-07T20:04:19Z
dc.date.available 2019-06-07T20:04:19Z
dc.date.issued 2018 es_ES
dc.identifier.issn 0025-6455 es_ES
dc.identifier.uri http://hdl.handle.net/10251/121753
dc.description.abstract [EN] A mechanistic model with rigid elements and interfaces suitable for the non-linear dynamic analysis of full scale 3D masonry buildings is presented. The model relies into two steps: in the first step, a simplified homogenization is performed at the meso-scale to deduce the mechanical properties of a macroscopic material, to be used in structural applications; the second step relies into the implementation of a Rigid Body and Spring Model (RBSM) constituted by rigid elements linked with homogenized interfaces. In the homogenization step, a running bond elementary cell is discretized with 24 three-node plane-stress elastic triangular elements and non-linear interfaces representing mortar joints. It is shown how the mechanical problem in the unit cell is characterized by few displacement variables and how homogenized stress¿strain curves can be evaluated by means of a semi-analytical approach. The second step relies on the implementation of the homogenized curves into a RBSM, where an entire masonry structure can be analyzed in the non-linear dynamic range through a discretization with rigid elements and inelastic interfaces. Non-linear structural analyses are conducted on a church façade interconnected with a portion of the perpendicular walls and on a small masonry building, for which experimental and numerical data are available in the literature, in order to show how quite reliable results may be obtained with a limited computational effort. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Meccanica es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Full 3D structures es_ES
dc.subject Masonry es_ES
dc.subject Non-linear dynamic analyses es_ES
dc.subject Rigid Body and Spring Model es_ES
dc.subject Semi-analytical homogenization approach es_ES
dc.title Homogenization towards a mechanistic Rigid Body and Spring Model (HRBSM) for the non-linear dynamic analysis of 3D masonry structures es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s11012-017-0665-6 es_ES
dc.rights.accessRights Cerrado es_ES
dc.description.bibliographicCitation Bertolesi, E.; Milani, G.; Casolo, S. (2018). Homogenization towards a mechanistic Rigid Body and Spring Model (HRBSM) for the non-linear dynamic analysis of 3D masonry structures. Meccanica. 53(7):1819-1855. https://doi.org/10.1007/s11012-017-0665-6 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.org/10.1007/s11012-017-0665-6 es_ES
dc.description.upvformatpinicio 1819 es_ES
dc.description.upvformatpfin 1855 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 53 es_ES
dc.description.issue 7 es_ES
dc.relation.pasarela S\357068 es_ES
dc.description.references Lourenço PB, de Borst R, Rots JG (1997) A plane stress softening plasticity model for orthotropic materials. Int J Numer Methods Eng 40:4033–4057 es_ES
dc.description.references Milani G (2015) Four approaches to determine masonry strength domain. Proc ICE Eng Comput Mech 168(3):99–121 es_ES
dc.description.references Lourenço PB, Rots J (1997) A multi-surface interface model for the analysis of masonry structures. J Eng Mech ASCE 123(7):660–668 es_ES
dc.description.references Macorini L, Izzuddin BA (2010) A non-linear interface element for 3D mesoscale analysis of brick-masonry structures. Int J Numer Methods Eng 85(12):1584–1608 es_ES
dc.description.references Pietruszczak S, Ushaksarei R (2003) Description of inelastic behaviour of structural masonry. Int J Solids Struct 40:4003–4019 es_ES
dc.description.references Lopez J, Oller S, Onate E, Lubliner J (1999) A homogeneous constitutive model for masonry. Int J Numer Methods Eng 46(10):1651–1671 es_ES
dc.description.references Cundall PA (1971) A computer model for simulating progressive large scale movements in blocky rock systems’. In: Proceedings of the symposium of the international society of rock mechanics (Nancy, France, 1971), 1, Paper No. II-8 es_ES
dc.description.references Cundall PA (1987) Distinct element models of rock and soil structure. In: Brown ET (ed) Analytical and computational methods in engineering rock mechanics, chapter 4. George Allen and Unwin, London, pp 129–163 es_ES
dc.description.references Cundall PA (1988) Formulation of a three-dimensional distinct element model—Part I: a scheme to detect and represent contacts in a system composed of many polyedral blocks. Int J Rock Mech Min Sci 25:107–116 es_ES
dc.description.references Hart R, Cundall PA, Lemos J (1988) Formulation of a three-dimensional distinct element model-part II. mechanical calculations for motion and interaction of a system composed of many polyhedral blocks. Int J Rock Mech Min Sci 25(3):117–125 es_ES
dc.description.references O’Connor KM, Dowding CM (1992) Distinct element modeling and analysis of mining-induced subsidence. Rock Mech Rock Eng 25:1–24 es_ES
dc.description.references Kuhn MR, Bagi K (2009) Specimen size effect in discrete element simulations of granular assemblies. J Eng Mech 135(6):485–492 es_ES
dc.description.references Sincraian GE, Azevedo JJ (1998) Numerical simulation of the seismic behavior of stone and brick masonry structures using the discrete element method. In: Proceedings of 11th European conference on earthquake engineering, Balkema es_ES
dc.description.references Sincraian GE, Lemos JV (1998) A discrete element program based on a rigid block formulation. Report 40/98- NDE/NEE, Laboratorio National de Engenharia Civil, Lisbon es_ES
dc.description.references Giamundo V, Sarhosis V, Lignola GP, Sheng Y, Manfredi G (2014) Evaluation of different computational modelling strategies for the analysis of low strength masonry structures. Eng Struct 73:160–169 es_ES
dc.description.references Sarhosis V, Garrity SW, Sheng Y (2008) Distinct element modelling of masonry wall panels with openings. In: 9th International conference on computational structures technology, CST 2008; Athens; Greece; 2–5 Sept 2008 es_ES
dc.description.references Sarhosis V, Tsavdaridis KD, Giannopoulos I (2014) Discrete element modelling of masonry infilled steel frames with multiple window openings subjected to lateral load variations. Open Constr Build Technol J 8(1):93–103 es_ES
dc.description.references Tóth AR, Orbán Z, Bagi K (2009) Discrete element analysis of a stone masonry arch. Mech Res Commun 36(4):469–480 es_ES
dc.description.references Lengyel G, Bagi K (2015) Numerical analysis of the mechanical role of the ribs in groin vaults. Comput Struct 158:42–60 es_ES
dc.description.references Lemos JV (1997) Discrete element modelling of the seismic behaviour of stone masonry arches. In: Pande GN, Middleton J, Kralj B (eds) Computer methods in structural masonry 4. E&FN Spon, London, pp 220–227 es_ES
dc.description.references Lemos JV (2007) Discrete element modelling of masonry structures. Int J Arch Heritage 1:190–213 es_ES
dc.description.references Kawai T (1978) New discrete models and their application to seismic response analysis of structures. Nucl Eng Des 48:207–229 es_ES
dc.description.references Casolo S (2009) Macroscale modelling of microstructure damage evolution by a rigid body and spring model. J Mech Mater Struct 4(3):551–570 es_ES
dc.description.references Casolo S (2004) Modelling in-plane micro-structure of masonry walls by rigid elements. Int J Solids Struct 41(13):3625–3641 es_ES
dc.description.references Dolatshahi KM, Aref AJ, Whittaker AS (2015) Interaction curves for in-plane and out-of-plane behaviors of unreinforced masonry walls. J Earthq Eng 19(1):60–84 es_ES
dc.description.references Casolo S, Milani G (2010) A simplified homogenization-discrete element model for the non-linear static analysis of masonry walls out-of-plane loaded. Eng Struct 32:2352–2366 es_ES
dc.description.references Casolo S, Uva G (2013) Nonlinear analysis of out-of-plane masonry façades: full dynamic versus pushover methods by rigid body and spring model. Earthq Eng Struct Dyn 42:499–521 es_ES
dc.description.references Casolo S, Milani G (2013) Simplified out-of-plane modeling of three-leaf masonry walls accounting for the material texture. Constr Build Mater 40:330–351 es_ES
dc.description.references Casolo S, Milani G, Uva G, Alessandri C (2013) Comparative seismic vulnerability analysis on ten masonry towers in the coastal Po Valley in Italy. Eng Struct 49:465–490 es_ES
dc.description.references de Buhan P, de Felice G (1997) A homogenisation approach to the ultimate strength of brick masonry. J Mech Phys Solids 45(7):1085–1104 es_ES
dc.description.references Luciano R, Sacco E (1997) Homogenisation technique and damage model for old masonry material. Int J Solids Struct 34(24):3191–3208 es_ES
dc.description.references Caillerie D (1984) Thin elastic and periodic plates. Math Methods Appl Sci 6:159–191 es_ES
dc.description.references Anthoine A (1995) Derivation of the in-plane elastic characteristics of masonry through homogenisation theory. Int J Solids Struct 32(2):137–163 es_ES
dc.description.references Pegon P, Anthoine A (1997) Numerical strategies for solving continuum damage problems with softening: application to the homogenisation of masonry. Comput Struct 64(1–4):623–642 es_ES
dc.description.references Cecchi A, Sab K (2002) A multi-parameter homogenization study for modelling elastic masonry. Eur J Mech/A-Solids 21:249–268 es_ES
dc.description.references Cecchi A, Milani G, Tralli A (2005) Validation of analytical multi-parameter homogenization models for out-of-plane loaded masonry walls by means of the finite element method. ASCE J Eng Mech 131(2):185–198 es_ES
dc.description.references Milani G (2009) Homogenized limit analysis of FRP-reinforced masonry walls out-of-plane loaded. Comput Mech 43:617–639 es_ES
dc.description.references Milani G, Lourenço PB, Tralli A (2006) Homogenised limit analysis of masonry walls. Part I: failure surfaces. Comput Struct 84(3–4):166–180 es_ES
dc.description.references Milani G, Lourenço PB, Tralli A (2006) Homogenization approach for the limit analysis of out-of-plane loaded masonry walls. J Struct Eng ASCE 132(10):1650–1663 es_ES
dc.description.references Milani G, Lourenço PB (2010) Monte Carlo homogenized limit analysis model for randomly assembled blocks in-plane loaded. Comput Mech 46(6):827–849 es_ES
dc.description.references Massart TJ (2003). Multi-scale modeling of damage in masonry structures. Ph.D. Thesis University of Bruxelles, Belgium es_ES
dc.description.references Zucchini A, Lourenço PB (2002) A micro-mechanical model for the homogenization of masonry. Int J Solids Struct 39:3233–3255 es_ES
dc.description.references Zucchini A, Lourenço PB (2004) A coupled homogenisation-damage model for masonry cracking. Comput Struct 82:917–929 es_ES
dc.description.references Massart T, Peerlings RHJ, Geers MGD (2004) Mesoscopic modeling of failure and damage-induced anisotropy in brick masonry. Eur J Mech A/Solids 23:719–735 es_ES
dc.description.references Massart T, Peerlings RHJ, Geers MGD (2007) An enhanced multi-scale approach for masonry wall computations with localization of damage. Int J Numer Methods Eng 69:1022–1059 es_ES
dc.description.references Mercatoris BCN, Massart T (2011) A coupled two-scale computational scheme for the failure of periodic quasi-brittle thin planar shells and its application to masonry. Int J Numer Methods Eng 85(9):1177–1206 es_ES
dc.description.references Marfia S, Sacco E (2012) Multiscale damage contact-friction model for periodic masonry walls. Comput Methods Appl Mech Eng 205–208:189–203 es_ES
dc.description.references Addessi D, Sacco E (2014) A kinematic enriched plane state formulation for the analysis of masonry panels. Eur J Mech A Solids 44:188–200 es_ES
dc.description.references Addessi D, Sacco E (2016) Nonlinear analysis of masonry panels using a kinematic enriched plane state formulation. Int J Solids Struct 90:194–214 es_ES
dc.description.references Addessi D, Sacco E (2016) Enriched plane state formulation for nonlinear homogenization of in-plane masonry wall. Meccanica 51:2891–2907 es_ES
dc.description.references Bertolesi E, Milani G, Lourenço PB (2016) Implementation and validation of a total displacement non-linear homogenization approach for in-plane loaded masonry. Comput Struct 176:13–33 es_ES
dc.description.references Cecchi A, Milani G, Tralli A (2007) A Reissner–Mindlin limit analysis model for out-of-plane loaded running bond masonry walls. Int J Solids Struct 44(5):1438–1460 es_ES
dc.description.references Xu XP, Needleman A (1993) Potential-based and non-potential-based cohesive zone formulations under mixed-mode separation and over-closure. Part I: theoretical analysis. J Mech Phys Solids 2:417–418 es_ES
dc.description.references Bertolesi E, Milani G, Fedele R (2016) Fast and reliable non-linear heterogeneous FE approach for the analysis of FRP-reinforced masonry arches. Compos B Eng 88:189–200 es_ES
dc.description.references Bothara JK, Dhakal RP, Mander JB (2010) Seismic performance of an unreinforced masonry building: an experimental investigation. Earthq Eng Struct Dyn 39:45–68 es_ES
dc.description.references Bothara JK, Mander JB, Dhakal RP, Khare RK, Maniyar MM (2007) Seismic performance and financial risk of masonry house. ISET J Earthq Technol 44:421–444 es_ES
dc.description.references Bothara JK (2004) A shaking table investigation on the seismic resistance of a brick masonry house. Master Thesis. University of Canterbury, Christchurch New Zealand es_ES
dc.description.references ABAQUS™ (2006) Theory manual, version 6.6 es_ES
dc.description.references Lubliner J, Oliver J, Oller S, Oñate E (1989) A plastic-damage model for concrete. Int J Solids Struct 25(3):299–326 es_ES
dc.description.references Van der Pluijm R, Rutten HS, Schiebroek, CS (1992). Flexural behaviour of masonry in different directions. In: Proceedings of 4th international masonry conference, British Masonry Society, pp 117–123 es_ES
dc.description.references Van der Pluijm R (1999) Out-of-plane bending of masonry. Behavior and strength. Ph.D. Thesis, Eindhoven University of Technology es_ES
dc.description.references Milani G, Tralli A (2011) Simple SQP approach for out-of-plane loaded homogenized brickwork panels accounting for softening. Comput Struct 89(1–2):201–215 es_ES
dc.description.references Gazzola EA, Drysdale RG, Essawy AS (1985). Bending of concrete masonry walls at different angles to the bed joints. In: Proceedings of 3th North American Masonry conference Arlington, TX, USA, Paper 27 es_ES
dc.description.references Lourenço PB (1997) An anisotropic macro-model for masonry plates and shells: implementation and validation. Report 03.21.1.3.07, University of Delft, Delft, Holland and University of Minho, Guimarães, Portugal es_ES
dc.description.references Doglioni F, Moretti A, Petrini V (1994) Le Chiese e il Terremoto. Lint Press, Trieste es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem