Mostrar el registro sencillo del ítem
dc.contributor.author | Bertolesi, Elisa | es_ES |
dc.contributor.author | Milani, Gabriele | es_ES |
dc.contributor.author | Casolo, Siro | es_ES |
dc.date.accessioned | 2019-06-07T20:04:19Z | |
dc.date.available | 2019-06-07T20:04:19Z | |
dc.date.issued | 2018 | es_ES |
dc.identifier.issn | 0025-6455 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/121753 | |
dc.description.abstract | [EN] A mechanistic model with rigid elements and interfaces suitable for the non-linear dynamic analysis of full scale 3D masonry buildings is presented. The model relies into two steps: in the first step, a simplified homogenization is performed at the meso-scale to deduce the mechanical properties of a macroscopic material, to be used in structural applications; the second step relies into the implementation of a Rigid Body and Spring Model (RBSM) constituted by rigid elements linked with homogenized interfaces. In the homogenization step, a running bond elementary cell is discretized with 24 three-node plane-stress elastic triangular elements and non-linear interfaces representing mortar joints. It is shown how the mechanical problem in the unit cell is characterized by few displacement variables and how homogenized stress¿strain curves can be evaluated by means of a semi-analytical approach. The second step relies on the implementation of the homogenized curves into a RBSM, where an entire masonry structure can be analyzed in the non-linear dynamic range through a discretization with rigid elements and inelastic interfaces. Non-linear structural analyses are conducted on a church façade interconnected with a portion of the perpendicular walls and on a small masonry building, for which experimental and numerical data are available in the literature, in order to show how quite reliable results may be obtained with a limited computational effort. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer-Verlag | es_ES |
dc.relation.ispartof | Meccanica | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Full 3D structures | es_ES |
dc.subject | Masonry | es_ES |
dc.subject | Non-linear dynamic analyses | es_ES |
dc.subject | Rigid Body and Spring Model | es_ES |
dc.subject | Semi-analytical homogenization approach | es_ES |
dc.title | Homogenization towards a mechanistic Rigid Body and Spring Model (HRBSM) for the non-linear dynamic analysis of 3D masonry structures | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s11012-017-0665-6 | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.description.bibliographicCitation | Bertolesi, E.; Milani, G.; Casolo, S. (2018). Homogenization towards a mechanistic Rigid Body and Spring Model (HRBSM) for the non-linear dynamic analysis of 3D masonry structures. Meccanica. 53(7):1819-1855. https://doi.org/10.1007/s11012-017-0665-6 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://doi.org/10.1007/s11012-017-0665-6 | es_ES |
dc.description.upvformatpinicio | 1819 | es_ES |
dc.description.upvformatpfin | 1855 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 53 | es_ES |
dc.description.issue | 7 | es_ES |
dc.relation.pasarela | S\357068 | es_ES |
dc.description.references | Lourenço PB, de Borst R, Rots JG (1997) A plane stress softening plasticity model for orthotropic materials. Int J Numer Methods Eng 40:4033–4057 | es_ES |
dc.description.references | Milani G (2015) Four approaches to determine masonry strength domain. Proc ICE Eng Comput Mech 168(3):99–121 | es_ES |
dc.description.references | Lourenço PB, Rots J (1997) A multi-surface interface model for the analysis of masonry structures. J Eng Mech ASCE 123(7):660–668 | es_ES |
dc.description.references | Macorini L, Izzuddin BA (2010) A non-linear interface element for 3D mesoscale analysis of brick-masonry structures. Int J Numer Methods Eng 85(12):1584–1608 | es_ES |
dc.description.references | Pietruszczak S, Ushaksarei R (2003) Description of inelastic behaviour of structural masonry. Int J Solids Struct 40:4003–4019 | es_ES |
dc.description.references | Lopez J, Oller S, Onate E, Lubliner J (1999) A homogeneous constitutive model for masonry. Int J Numer Methods Eng 46(10):1651–1671 | es_ES |
dc.description.references | Cundall PA (1971) A computer model for simulating progressive large scale movements in blocky rock systems’. In: Proceedings of the symposium of the international society of rock mechanics (Nancy, France, 1971), 1, Paper No. II-8 | es_ES |
dc.description.references | Cundall PA (1987) Distinct element models of rock and soil structure. In: Brown ET (ed) Analytical and computational methods in engineering rock mechanics, chapter 4. George Allen and Unwin, London, pp 129–163 | es_ES |
dc.description.references | Cundall PA (1988) Formulation of a three-dimensional distinct element model—Part I: a scheme to detect and represent contacts in a system composed of many polyedral blocks. Int J Rock Mech Min Sci 25:107–116 | es_ES |
dc.description.references | Hart R, Cundall PA, Lemos J (1988) Formulation of a three-dimensional distinct element model-part II. mechanical calculations for motion and interaction of a system composed of many polyhedral blocks. Int J Rock Mech Min Sci 25(3):117–125 | es_ES |
dc.description.references | O’Connor KM, Dowding CM (1992) Distinct element modeling and analysis of mining-induced subsidence. Rock Mech Rock Eng 25:1–24 | es_ES |
dc.description.references | Kuhn MR, Bagi K (2009) Specimen size effect in discrete element simulations of granular assemblies. J Eng Mech 135(6):485–492 | es_ES |
dc.description.references | Sincraian GE, Azevedo JJ (1998) Numerical simulation of the seismic behavior of stone and brick masonry structures using the discrete element method. In: Proceedings of 11th European conference on earthquake engineering, Balkema | es_ES |
dc.description.references | Sincraian GE, Lemos JV (1998) A discrete element program based on a rigid block formulation. Report 40/98- NDE/NEE, Laboratorio National de Engenharia Civil, Lisbon | es_ES |
dc.description.references | Giamundo V, Sarhosis V, Lignola GP, Sheng Y, Manfredi G (2014) Evaluation of different computational modelling strategies for the analysis of low strength masonry structures. Eng Struct 73:160–169 | es_ES |
dc.description.references | Sarhosis V, Garrity SW, Sheng Y (2008) Distinct element modelling of masonry wall panels with openings. In: 9th International conference on computational structures technology, CST 2008; Athens; Greece; 2–5 Sept 2008 | es_ES |
dc.description.references | Sarhosis V, Tsavdaridis KD, Giannopoulos I (2014) Discrete element modelling of masonry infilled steel frames with multiple window openings subjected to lateral load variations. Open Constr Build Technol J 8(1):93–103 | es_ES |
dc.description.references | Tóth AR, Orbán Z, Bagi K (2009) Discrete element analysis of a stone masonry arch. Mech Res Commun 36(4):469–480 | es_ES |
dc.description.references | Lengyel G, Bagi K (2015) Numerical analysis of the mechanical role of the ribs in groin vaults. Comput Struct 158:42–60 | es_ES |
dc.description.references | Lemos JV (1997) Discrete element modelling of the seismic behaviour of stone masonry arches. In: Pande GN, Middleton J, Kralj B (eds) Computer methods in structural masonry 4. E&FN Spon, London, pp 220–227 | es_ES |
dc.description.references | Lemos JV (2007) Discrete element modelling of masonry structures. Int J Arch Heritage 1:190–213 | es_ES |
dc.description.references | Kawai T (1978) New discrete models and their application to seismic response analysis of structures. Nucl Eng Des 48:207–229 | es_ES |
dc.description.references | Casolo S (2009) Macroscale modelling of microstructure damage evolution by a rigid body and spring model. J Mech Mater Struct 4(3):551–570 | es_ES |
dc.description.references | Casolo S (2004) Modelling in-plane micro-structure of masonry walls by rigid elements. Int J Solids Struct 41(13):3625–3641 | es_ES |
dc.description.references | Dolatshahi KM, Aref AJ, Whittaker AS (2015) Interaction curves for in-plane and out-of-plane behaviors of unreinforced masonry walls. J Earthq Eng 19(1):60–84 | es_ES |
dc.description.references | Casolo S, Milani G (2010) A simplified homogenization-discrete element model for the non-linear static analysis of masonry walls out-of-plane loaded. Eng Struct 32:2352–2366 | es_ES |
dc.description.references | Casolo S, Uva G (2013) Nonlinear analysis of out-of-plane masonry façades: full dynamic versus pushover methods by rigid body and spring model. Earthq Eng Struct Dyn 42:499–521 | es_ES |
dc.description.references | Casolo S, Milani G (2013) Simplified out-of-plane modeling of three-leaf masonry walls accounting for the material texture. Constr Build Mater 40:330–351 | es_ES |
dc.description.references | Casolo S, Milani G, Uva G, Alessandri C (2013) Comparative seismic vulnerability analysis on ten masonry towers in the coastal Po Valley in Italy. Eng Struct 49:465–490 | es_ES |
dc.description.references | de Buhan P, de Felice G (1997) A homogenisation approach to the ultimate strength of brick masonry. J Mech Phys Solids 45(7):1085–1104 | es_ES |
dc.description.references | Luciano R, Sacco E (1997) Homogenisation technique and damage model for old masonry material. Int J Solids Struct 34(24):3191–3208 | es_ES |
dc.description.references | Caillerie D (1984) Thin elastic and periodic plates. Math Methods Appl Sci 6:159–191 | es_ES |
dc.description.references | Anthoine A (1995) Derivation of the in-plane elastic characteristics of masonry through homogenisation theory. Int J Solids Struct 32(2):137–163 | es_ES |
dc.description.references | Pegon P, Anthoine A (1997) Numerical strategies for solving continuum damage problems with softening: application to the homogenisation of masonry. Comput Struct 64(1–4):623–642 | es_ES |
dc.description.references | Cecchi A, Sab K (2002) A multi-parameter homogenization study for modelling elastic masonry. Eur J Mech/A-Solids 21:249–268 | es_ES |
dc.description.references | Cecchi A, Milani G, Tralli A (2005) Validation of analytical multi-parameter homogenization models for out-of-plane loaded masonry walls by means of the finite element method. ASCE J Eng Mech 131(2):185–198 | es_ES |
dc.description.references | Milani G (2009) Homogenized limit analysis of FRP-reinforced masonry walls out-of-plane loaded. Comput Mech 43:617–639 | es_ES |
dc.description.references | Milani G, Lourenço PB, Tralli A (2006) Homogenised limit analysis of masonry walls. Part I: failure surfaces. Comput Struct 84(3–4):166–180 | es_ES |
dc.description.references | Milani G, Lourenço PB, Tralli A (2006) Homogenization approach for the limit analysis of out-of-plane loaded masonry walls. J Struct Eng ASCE 132(10):1650–1663 | es_ES |
dc.description.references | Milani G, Lourenço PB (2010) Monte Carlo homogenized limit analysis model for randomly assembled blocks in-plane loaded. Comput Mech 46(6):827–849 | es_ES |
dc.description.references | Massart TJ (2003). Multi-scale modeling of damage in masonry structures. Ph.D. Thesis University of Bruxelles, Belgium | es_ES |
dc.description.references | Zucchini A, Lourenço PB (2002) A micro-mechanical model for the homogenization of masonry. Int J Solids Struct 39:3233–3255 | es_ES |
dc.description.references | Zucchini A, Lourenço PB (2004) A coupled homogenisation-damage model for masonry cracking. Comput Struct 82:917–929 | es_ES |
dc.description.references | Massart T, Peerlings RHJ, Geers MGD (2004) Mesoscopic modeling of failure and damage-induced anisotropy in brick masonry. Eur J Mech A/Solids 23:719–735 | es_ES |
dc.description.references | Massart T, Peerlings RHJ, Geers MGD (2007) An enhanced multi-scale approach for masonry wall computations with localization of damage. Int J Numer Methods Eng 69:1022–1059 | es_ES |
dc.description.references | Mercatoris BCN, Massart T (2011) A coupled two-scale computational scheme for the failure of periodic quasi-brittle thin planar shells and its application to masonry. Int J Numer Methods Eng 85(9):1177–1206 | es_ES |
dc.description.references | Marfia S, Sacco E (2012) Multiscale damage contact-friction model for periodic masonry walls. Comput Methods Appl Mech Eng 205–208:189–203 | es_ES |
dc.description.references | Addessi D, Sacco E (2014) A kinematic enriched plane state formulation for the analysis of masonry panels. Eur J Mech A Solids 44:188–200 | es_ES |
dc.description.references | Addessi D, Sacco E (2016) Nonlinear analysis of masonry panels using a kinematic enriched plane state formulation. Int J Solids Struct 90:194–214 | es_ES |
dc.description.references | Addessi D, Sacco E (2016) Enriched plane state formulation for nonlinear homogenization of in-plane masonry wall. Meccanica 51:2891–2907 | es_ES |
dc.description.references | Bertolesi E, Milani G, Lourenço PB (2016) Implementation and validation of a total displacement non-linear homogenization approach for in-plane loaded masonry. Comput Struct 176:13–33 | es_ES |
dc.description.references | Cecchi A, Milani G, Tralli A (2007) A Reissner–Mindlin limit analysis model for out-of-plane loaded running bond masonry walls. Int J Solids Struct 44(5):1438–1460 | es_ES |
dc.description.references | Xu XP, Needleman A (1993) Potential-based and non-potential-based cohesive zone formulations under mixed-mode separation and over-closure. Part I: theoretical analysis. J Mech Phys Solids 2:417–418 | es_ES |
dc.description.references | Bertolesi E, Milani G, Fedele R (2016) Fast and reliable non-linear heterogeneous FE approach for the analysis of FRP-reinforced masonry arches. Compos B Eng 88:189–200 | es_ES |
dc.description.references | Bothara JK, Dhakal RP, Mander JB (2010) Seismic performance of an unreinforced masonry building: an experimental investigation. Earthq Eng Struct Dyn 39:45–68 | es_ES |
dc.description.references | Bothara JK, Mander JB, Dhakal RP, Khare RK, Maniyar MM (2007) Seismic performance and financial risk of masonry house. ISET J Earthq Technol 44:421–444 | es_ES |
dc.description.references | Bothara JK (2004) A shaking table investigation on the seismic resistance of a brick masonry house. Master Thesis. University of Canterbury, Christchurch New Zealand | es_ES |
dc.description.references | ABAQUS™ (2006) Theory manual, version 6.6 | es_ES |
dc.description.references | Lubliner J, Oliver J, Oller S, Oñate E (1989) A plastic-damage model for concrete. Int J Solids Struct 25(3):299–326 | es_ES |
dc.description.references | Van der Pluijm R, Rutten HS, Schiebroek, CS (1992). Flexural behaviour of masonry in different directions. In: Proceedings of 4th international masonry conference, British Masonry Society, pp 117–123 | es_ES |
dc.description.references | Van der Pluijm R (1999) Out-of-plane bending of masonry. Behavior and strength. Ph.D. Thesis, Eindhoven University of Technology | es_ES |
dc.description.references | Milani G, Tralli A (2011) Simple SQP approach for out-of-plane loaded homogenized brickwork panels accounting for softening. Comput Struct 89(1–2):201–215 | es_ES |
dc.description.references | Gazzola EA, Drysdale RG, Essawy AS (1985). Bending of concrete masonry walls at different angles to the bed joints. In: Proceedings of 3th North American Masonry conference Arlington, TX, USA, Paper 27 | es_ES |
dc.description.references | Lourenço PB (1997) An anisotropic macro-model for masonry plates and shells: implementation and validation. Report 03.21.1.3.07, University of Delft, Delft, Holland and University of Minho, Guimarães, Portugal | es_ES |
dc.description.references | Doglioni F, Moretti A, Petrini V (1994) Le Chiese e il Terremoto. Lint Press, Trieste | es_ES |