Mostrar el registro sencillo del ítem
dc.contributor.author | Silva-Palacios, Daniel Andres | es_ES |
dc.contributor.author | Ferri Ramírez, César | es_ES |
dc.contributor.author | Ramírez Quintana, María José | es_ES |
dc.date.accessioned | 2019-06-07T20:06:48Z | |
dc.date.available | 2019-06-07T20:06:48Z | |
dc.date.issued | 2018 | es_ES |
dc.identifier.issn | 1877-7503 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/121789 | |
dc.description.abstract | [EN] The improvement in the performance of classifiers has been the focus of attention of many researchers over the last few decades. Obtaining accurate predictions becomes more complicated as the number of classes increases. Most families of classification techniques generate models that define decision boundaries trying to separate the classes as well as possible. As an alternative, in this paper, we propose to hierarchically decompose the original multiclass problem by reducing the number of classes involved in each local subproblem. This is done by deriving a similarity matrix from the misclassification errors given by a first classifier that is learned for this, and then, using the similarity matrix to build a tree-like hierarchy of specialized classifiers. Then, we present two approaches to solve the multiclass problem: the first one traverses the tree of classifiers in a top-down manner similar to the way some hierarchical classification methods do for dealing with hierarchical domains; the second one is inspired in the way probabilistic decision trees compute class membership probabilities. To improve the efficiency of our methods, we propose a criterion to reduce the size of the hierarchy. We experimentally evaluate all of the proposals on a collection of multiclass datasets showing that, in general, the generated classifier hierarchies outperform the original (flat) multiclass classification. | es_ES |
dc.description.sponsorship | This work was partially supported by the the EU (FEDER) and the Spanish MINECO under grant TIN 2015-69175-C4-1-R, and by Generalitat Valenciana PROMETEOII2015/013. This work has been supported by the Secretary of Higher Education, Science and Technology (SENESCYT: Secretaria Nacional de Educacion Superior, Ciencia y Tecnologia), of the Republic of Ecuador. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Journal of Computational Science | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Multiclass classification | es_ES |
dc.subject | Class hierarchy inference | es_ES |
dc.subject | Hierarchy of classifiers | es_ES |
dc.subject.classification | LENGUAJES Y SISTEMAS INFORMATICOS | es_ES |
dc.title | Probabilistic class hierarchies for multiclass classification | es_ES |
dc.type | Artículo | es_ES |
dc.type | Comunicación en congreso | es_ES |
dc.identifier.doi | 10.1016/j.jocs.2018.01.006 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2015%2F013/ES/SmartLogic: Logic Technologies for Software Security and Performance/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//TIN2015-69175-C4-1-R/ES/SOLUCIONES EFECTIVAS BASADAS EN LA LOGICA/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació | es_ES |
dc.description.bibliographicCitation | Silva-Palacios, DA.; Ferri Ramírez, C.; Ramírez Quintana, MJ. (2018). Probabilistic class hierarchies for multiclass classification. Journal of Computational Science. 26:254-263. https://doi.org/10.1016/j.jocs.2018.01.006 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.conferencename | International Conference on Computational Science (ICCS 2017) | es_ES |
dc.relation.conferencedate | Junio 12-14,2017 | es_ES |
dc.relation.conferenceplace | Zürich, Switzerland | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.jocs.2018.01.006 | es_ES |
dc.description.upvformatpinicio | 254 | es_ES |
dc.description.upvformatpfin | 263 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 26 | es_ES |
dc.relation.pasarela | S\355166 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Ministerio de Economía y Empresa | es_ES |