- -

Probabilistic class hierarchies for multiclass classification

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Probabilistic class hierarchies for multiclass classification

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Silva-Palacios, Daniel Andres es_ES
dc.contributor.author Ferri Ramírez, César es_ES
dc.contributor.author Ramírez Quintana, María José es_ES
dc.date.accessioned 2019-06-07T20:06:48Z
dc.date.available 2019-06-07T20:06:48Z
dc.date.issued 2018 es_ES
dc.identifier.issn 1877-7503 es_ES
dc.identifier.uri http://hdl.handle.net/10251/121789
dc.description.abstract [EN] The improvement in the performance of classifiers has been the focus of attention of many researchers over the last few decades. Obtaining accurate predictions becomes more complicated as the number of classes increases. Most families of classification techniques generate models that define decision boundaries trying to separate the classes as well as possible. As an alternative, in this paper, we propose to hierarchically decompose the original multiclass problem by reducing the number of classes involved in each local subproblem. This is done by deriving a similarity matrix from the misclassification errors given by a first classifier that is learned for this, and then, using the similarity matrix to build a tree-like hierarchy of specialized classifiers. Then, we present two approaches to solve the multiclass problem: the first one traverses the tree of classifiers in a top-down manner similar to the way some hierarchical classification methods do for dealing with hierarchical domains; the second one is inspired in the way probabilistic decision trees compute class membership probabilities. To improve the efficiency of our methods, we propose a criterion to reduce the size of the hierarchy. We experimentally evaluate all of the proposals on a collection of multiclass datasets showing that, in general, the generated classifier hierarchies outperform the original (flat) multiclass classification. es_ES
dc.description.sponsorship This work was partially supported by the the EU (FEDER) and the Spanish MINECO under grant TIN 2015-69175-C4-1-R, and by Generalitat Valenciana PROMETEOII2015/013. This work has been supported by the Secretary of Higher Education, Science and Technology (SENESCYT: Secretaria Nacional de Educacion Superior, Ciencia y Tecnologia), of the Republic of Ecuador. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Journal of Computational Science es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Multiclass classification es_ES
dc.subject Class hierarchy inference es_ES
dc.subject Hierarchy of classifiers es_ES
dc.subject.classification LENGUAJES Y SISTEMAS INFORMATICOS es_ES
dc.title Probabilistic class hierarchies for multiclass classification es_ES
dc.type Artículo es_ES
dc.type Comunicación en congreso es_ES
dc.identifier.doi 10.1016/j.jocs.2018.01.006 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2015%2F013/ES/SmartLogic: Logic Technologies for Software Security and Performance/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TIN2015-69175-C4-1-R/ES/SOLUCIONES EFECTIVAS BASADAS EN LA LOGICA/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació es_ES
dc.description.bibliographicCitation Silva-Palacios, DA.; Ferri Ramírez, C.; Ramírez Quintana, MJ. (2018). Probabilistic class hierarchies for multiclass classification. Journal of Computational Science. 26:254-263. https://doi.org/10.1016/j.jocs.2018.01.006 es_ES
dc.description.accrualMethod S es_ES
dc.relation.conferencename International Conference on Computational Science (ICCS 2017) es_ES
dc.relation.conferencedate Junio 12-14,2017 es_ES
dc.relation.conferenceplace Zürich, Switzerland es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.jocs.2018.01.006 es_ES
dc.description.upvformatpinicio 254 es_ES
dc.description.upvformatpfin 263 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 26 es_ES
dc.relation.pasarela S\355166 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Ministerio de Economía y Empresa es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem