- -

Graphene Film-Supported Oriented 1.1.1 Gold(0) Versus 2.0.0 Copper(I) Nanoplatelets as Very Efficient Catalysts for Coupling Reactions

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Graphene Film-Supported Oriented 1.1.1 Gold(0) Versus 2.0.0 Copper(I) Nanoplatelets as Very Efficient Catalysts for Coupling Reactions

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Candu, Natalia es_ES
dc.contributor.author Simion, Andrada es_ES
dc.contributor.author Coman, Simona M. es_ES
dc.contributor.author Primo Arnau, Ana Maria es_ES
dc.contributor.author Esteve-Adell, Iván es_ES
dc.contributor.author Parvulescu, Vasile I. es_ES
dc.contributor.author García Gómez, Hermenegildo es_ES
dc.date.accessioned 2019-06-08T20:02:29Z
dc.date.available 2019-06-08T20:02:29Z
dc.date.issued 2018 es_ES
dc.identifier.issn 1022-5528 es_ES
dc.identifier.uri http://hdl.handle.net/10251/121821
dc.description.abstract [EN] Few-layered graphene-supported 1.1.1 and 2.0.0 oriented Au and Cu2O nanoplatelets were prepared by one-step pyrolysis of the corresponding metal salts embedded in chitosan at 900 degrees C under inert atmosphere. These nanometric films containing oriented nanoplatelets were investigated in a series of reactions as Ullmann-type homocoupling, C-N cross-coupling and Michael addition. The catalysts exhibited turnover numbers (TONs) three to six ord(e)rs of magnitude higher than those of analogous graphene-supported unoriented metal nanoparticles. In addition it has been found that oriented Cu2O and Au nanoplatelets grafted on defective graphene also exhibit activity to promote the Michael addition of compounds with active methylene and methine hydrogens to alpha,beta-conjugated ketone. An exhaustive characterization of these materials using spectroscopic and electron microscopy analyses has been carried out. CO2 thermoprogrammed desorption measurements show that films of these two graphene supported catalysts exhibit some basicity that can explain their activity to promote Michael addition. es_ES
dc.description.sponsorship Financial support by the Spanish Ministry of Economy and Competitiveness (Severo Ochoa and CTQ2015-69153-CO2-R1) and Generalitat Valenciana (Prometeo 2017-083) is gratefully acknowledged. I.E.-A. and A.P thanks the Spanish Ministry for a postgraduate scholarship and for a Ramon y Cajal research associate contract, respectively. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Topics in Catalysis es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Heterogeneous catalysis es_ES
dc.subject Graphene as support es_ES
dc.subject Copper(I) oxide nanoparticles es_ES
dc.subject Gold(0) nanoparticles es_ES
dc.subject Coupling reactions es_ES
dc.subject Michael addition es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title Graphene Film-Supported Oriented 1.1.1 Gold(0) Versus 2.0.0 Copper(I) Nanoplatelets as Very Efficient Catalysts for Coupling Reactions es_ES
dc.type Artículo es_ES
dc.type Comunicación en congreso es_ES
dc.identifier.doi 10.1007/s11244-018-1043-x es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CTQ2015-69153-C2-1-R/ES/EXPLOTANDO EL USO DEL GRAFENO EN CATALISIS. USO DEL GRAFENO COMO CARBOCATALIZADOR O COMO SOPORTE/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2017%2F083/ es_ES
dc.rights.accessRights Abierto es_ES
dc.date.embargoEndDate 2019-09-01 es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Candu, N.; Simion, A.; Coman, SM.; Primo Arnau, AM.; Esteve-Adell, I.; Parvulescu, VI.; García Gómez, H. (2018). Graphene Film-Supported Oriented 1.1.1 Gold(0) Versus 2.0.0 Copper(I) Nanoplatelets as Very Efficient Catalysts for Coupling Reactions. Topics in Catalysis. 61(14):1449-1457. https://doi.org/10.1007/s11244-018-1043-x es_ES
dc.description.accrualMethod S es_ES
dc.relation.conferencename 13th European Congress on Catalysis (EuropaCAT 2017) es_ES
dc.relation.conferencedate Agosto 27-31,2017 es_ES
dc.relation.conferenceplace Florence, Italy es_ES
dc.relation.publisherversion http://doi.org/10.1007/s11244-018-1043-x es_ES
dc.description.upvformatpinicio 1449 es_ES
dc.description.upvformatpfin 1457 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 61 es_ES
dc.description.issue 14 es_ES
dc.relation.pasarela S\382628 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Ministerio de Economía y Empresa es_ES
dc.description.references Tao F (2016) Metal nanoparticles for catalysis: advances and applications. RSC Catalysis Series, Cambridge es_ES
dc.description.references Wildgoose GG, Banks CE, Compton RG (2006) Metal nanoparticles and related materials supported on carbon nanotubes: methods and applications. Small 2:182–193 es_ES
dc.description.references Ding M, Tang Y, Star A (2013) Understanding interfaces in metal–graphitic hybrid nanostructures. J Phys Chem Lett 4:147–160 es_ES
dc.description.references Primo A, Esteve I, Blandez JF, Dhakshinamoorthy A, Alvaro M, Candu N, Coman S, Parvulescu VI, Garcia H (2015) High catalytic activity of oriented 2.0.0 copper(I) oxide grown on graphene film. Nat Commun 6:8561 es_ES
dc.description.references Ravi Kumar MNV (2000) A review of chitin and chitosan applications. React Funct Polym 46:1–27 es_ES
dc.description.references Rinaudo M (2006) Chitin and chitosan: properties and applications. Prog Polym Sci 31:603–632 es_ES
dc.description.references Rinaudo M (2008) Main properties and current applications of some polysaccharides as biomaterials. Polym Int 57:397–430 es_ES
dc.description.references Primo A, Atienzar P, Sanchez E, Delgado JM, Garcia H (2012) From biomass wastes to large-area, high-quality, N-doped graphene: catalyst-free carbonization of chitosan coatings on arbitrary substrates. Chem Commun 48:9254–9256 es_ES
dc.description.references Primo A, Sánchez E, Delgado JM, Garcia H (2014) High-yield production of N-doped graphitic platelets by aqueous exfoliation of pyrolyzed chitosan. Carbon 68:777–783 es_ES
dc.description.references Primo A, Forneli A, Corma A, Garcia H (2012) From biomass wastes to highly efficient CO2 adsorbents graphitisation of chitosan and alginate biopolymers. ChemSusChem 5:2207–2214 es_ES
dc.description.references Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee SK, Colombo L, Ruoff RS (2009) Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324:1312–1314 es_ES
dc.description.references Takagi D, Kobayashi Y, Hlbirio H, Suzuki S, Homma Y (2008) Mechanism of gold-catalyzed carbon material growth. Nano Lett 8:832–835 es_ES
dc.description.references Reina A, Jia X, Ho J, Nezich D, Son H, Bulovic V, Cresselhaus MS, Kong J (2008) Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett 9:30–35 es_ES
dc.description.references Wei D, Liu Y, Zhang H, Huang L, Yu G (2009) Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties. Nano Lett 9:1752–1758 es_ES
dc.description.references Kim KS, Zhao Y, Jang H, Lee SY, Kim JM, Kim KS, Ahn J-H, Choi J-Y, Hong BH (2009) Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457:706–710 es_ES
dc.description.references Gao L, Guest JR, Guisinger NP (2010) Epitaxial graphene on Cu(111). Nano Lett 10:3512–3516 es_ES
dc.description.references Zhao L, Rim KT, Zhou H, He R, Heinz TF, Pinczuk A, Flynn GW, Pasupathy AN (2011) Influence of copper crystal surface on the CVD growth of large area monolayer graphene. Solid State Commun 151:509–513 es_ES
dc.description.references Wood JD, Schmucker SW, Lyons AS, Pop E, Lyding JW (2011) Effects of polycrystalline Cu substrate on graphene growth by chemical vapor deposition. Nano Lett 11:4547–4554 es_ES
dc.description.references Primo A, Esteve-Adell I, Candu N, Coman S, Parvulescu V, Garcia H (2016) One-step pyrolysis preparation of 1.1.1 oriented gold nanoplatelets supported on graphene and six orders of magnitude enhancement of the resulting catalytic activity. Angew Chem-Int Ed 55:607–612 es_ES
dc.description.references Perlmutter P (1992) Conjugate addition reactions in organic synthesis. Pergamon Press, Elmsford es_ES
dc.description.references Christoffers J (1998) Transition-metal catalysis of the Michael reaction of 1,3-dicarbonyl compounds and acceptor-activated alkenes. Eur J Org Chem 7:1259–1266 es_ES
dc.description.references Comelles J, Moreno-Mañas M, Vallribera A (2005) Michael additions catalysed by transition metals and lanthanide species. A review. Arkivoc 9:207–238 es_ES
dc.description.references Saegusa T, Ito Y, Tomitra S, Kinoshita H (1972) Synthetic reactions by complex catalysts. XXIV. A new catalyst of copper-isocyanide complex for the Michael addition. Bull Chem Soc Jpn 45:496–499 es_ES
dc.description.references Hidehiko K, Masahiro S, Nagata C (1999) Acceleration of Michael addition reaction by microwave irradiation in the presence of metal acetylacetonate catalysts. Nippon Kagaku Kaishi 2:145–148 es_ES
dc.description.references Oh E, Susumu K, Blanco-Canosa JB, Medintz IL, Dawson PE, Mattoussi H (2010) Preparation of stable maleimide-functionalized Au nanoparticles and their use in counting surface ligands. Small 6:1273–1278 es_ES
dc.description.references Ba H, Rodriguez-Fernández J, Stefani FD, Feldman J (2010) Immobilization of gold nanoparticles on living cell membranes upon controlled lipid binding. Nano Lett 10:3006–3012 es_ES
dc.description.references Hartlen KD, Ismaili H, Zhu J, Workentin MS (2012) Michael addition reactions for the modification of gold nanoparticles facilitated by hyperbaric conditions. Langmuir 28:864–871 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem