Mostrar el registro sencillo del ítem
dc.contributor.author | Candu, Natalia | es_ES |
dc.contributor.author | Simion, Andrada | es_ES |
dc.contributor.author | Coman, Simona M. | es_ES |
dc.contributor.author | Primo Arnau, Ana Maria | es_ES |
dc.contributor.author | Esteve-Adell, Iván | es_ES |
dc.contributor.author | Parvulescu, Vasile I. | es_ES |
dc.contributor.author | García Gómez, Hermenegildo | es_ES |
dc.date.accessioned | 2019-06-08T20:02:29Z | |
dc.date.available | 2019-06-08T20:02:29Z | |
dc.date.issued | 2018 | es_ES |
dc.identifier.issn | 1022-5528 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/121821 | |
dc.description.abstract | [EN] Few-layered graphene-supported 1.1.1 and 2.0.0 oriented Au and Cu2O nanoplatelets were prepared by one-step pyrolysis of the corresponding metal salts embedded in chitosan at 900 degrees C under inert atmosphere. These nanometric films containing oriented nanoplatelets were investigated in a series of reactions as Ullmann-type homocoupling, C-N cross-coupling and Michael addition. The catalysts exhibited turnover numbers (TONs) three to six ord(e)rs of magnitude higher than those of analogous graphene-supported unoriented metal nanoparticles. In addition it has been found that oriented Cu2O and Au nanoplatelets grafted on defective graphene also exhibit activity to promote the Michael addition of compounds with active methylene and methine hydrogens to alpha,beta-conjugated ketone. An exhaustive characterization of these materials using spectroscopic and electron microscopy analyses has been carried out. CO2 thermoprogrammed desorption measurements show that films of these two graphene supported catalysts exhibit some basicity that can explain their activity to promote Michael addition. | es_ES |
dc.description.sponsorship | Financial support by the Spanish Ministry of Economy and Competitiveness (Severo Ochoa and CTQ2015-69153-CO2-R1) and Generalitat Valenciana (Prometeo 2017-083) is gratefully acknowledged. I.E.-A. and A.P thanks the Spanish Ministry for a postgraduate scholarship and for a Ramon y Cajal research associate contract, respectively. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer-Verlag | es_ES |
dc.relation.ispartof | Topics in Catalysis | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Heterogeneous catalysis | es_ES |
dc.subject | Graphene as support | es_ES |
dc.subject | Copper(I) oxide nanoparticles | es_ES |
dc.subject | Gold(0) nanoparticles | es_ES |
dc.subject | Coupling reactions | es_ES |
dc.subject | Michael addition | es_ES |
dc.subject.classification | QUIMICA ORGANICA | es_ES |
dc.title | Graphene Film-Supported Oriented 1.1.1 Gold(0) Versus 2.0.0 Copper(I) Nanoplatelets as Very Efficient Catalysts for Coupling Reactions | es_ES |
dc.type | Artículo | es_ES |
dc.type | Comunicación en congreso | es_ES |
dc.identifier.doi | 10.1007/s11244-018-1043-x | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//CTQ2015-69153-C2-1-R/ES/EXPLOTANDO EL USO DEL GRAFENO EN CATALISIS. USO DEL GRAFENO COMO CARBOCATALIZADOR O COMO SOPORTE/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEO%2F2017%2F083/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.date.embargoEndDate | 2019-09-01 | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Química - Departament de Química | es_ES |
dc.description.bibliographicCitation | Candu, N.; Simion, A.; Coman, SM.; Primo Arnau, AM.; Esteve-Adell, I.; Parvulescu, VI.; García Gómez, H. (2018). Graphene Film-Supported Oriented 1.1.1 Gold(0) Versus 2.0.0 Copper(I) Nanoplatelets as Very Efficient Catalysts for Coupling Reactions. Topics in Catalysis. 61(14):1449-1457. https://doi.org/10.1007/s11244-018-1043-x | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.conferencename | 13th European Congress on Catalysis (EuropaCAT 2017) | es_ES |
dc.relation.conferencedate | Agosto 27-31,2017 | es_ES |
dc.relation.conferenceplace | Florence, Italy | es_ES |
dc.relation.publisherversion | http://doi.org/10.1007/s11244-018-1043-x | es_ES |
dc.description.upvformatpinicio | 1449 | es_ES |
dc.description.upvformatpfin | 1457 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 61 | es_ES |
dc.description.issue | 14 | es_ES |
dc.relation.pasarela | S\382628 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Ministerio de Economía y Empresa | es_ES |
dc.description.references | Tao F (2016) Metal nanoparticles for catalysis: advances and applications. RSC Catalysis Series, Cambridge | es_ES |
dc.description.references | Wildgoose GG, Banks CE, Compton RG (2006) Metal nanoparticles and related materials supported on carbon nanotubes: methods and applications. Small 2:182–193 | es_ES |
dc.description.references | Ding M, Tang Y, Star A (2013) Understanding interfaces in metal–graphitic hybrid nanostructures. J Phys Chem Lett 4:147–160 | es_ES |
dc.description.references | Primo A, Esteve I, Blandez JF, Dhakshinamoorthy A, Alvaro M, Candu N, Coman S, Parvulescu VI, Garcia H (2015) High catalytic activity of oriented 2.0.0 copper(I) oxide grown on graphene film. Nat Commun 6:8561 | es_ES |
dc.description.references | Ravi Kumar MNV (2000) A review of chitin and chitosan applications. React Funct Polym 46:1–27 | es_ES |
dc.description.references | Rinaudo M (2006) Chitin and chitosan: properties and applications. Prog Polym Sci 31:603–632 | es_ES |
dc.description.references | Rinaudo M (2008) Main properties and current applications of some polysaccharides as biomaterials. Polym Int 57:397–430 | es_ES |
dc.description.references | Primo A, Atienzar P, Sanchez E, Delgado JM, Garcia H (2012) From biomass wastes to large-area, high-quality, N-doped graphene: catalyst-free carbonization of chitosan coatings on arbitrary substrates. Chem Commun 48:9254–9256 | es_ES |
dc.description.references | Primo A, Sánchez E, Delgado JM, Garcia H (2014) High-yield production of N-doped graphitic platelets by aqueous exfoliation of pyrolyzed chitosan. Carbon 68:777–783 | es_ES |
dc.description.references | Primo A, Forneli A, Corma A, Garcia H (2012) From biomass wastes to highly efficient CO2 adsorbents graphitisation of chitosan and alginate biopolymers. ChemSusChem 5:2207–2214 | es_ES |
dc.description.references | Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee SK, Colombo L, Ruoff RS (2009) Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324:1312–1314 | es_ES |
dc.description.references | Takagi D, Kobayashi Y, Hlbirio H, Suzuki S, Homma Y (2008) Mechanism of gold-catalyzed carbon material growth. Nano Lett 8:832–835 | es_ES |
dc.description.references | Reina A, Jia X, Ho J, Nezich D, Son H, Bulovic V, Cresselhaus MS, Kong J (2008) Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett 9:30–35 | es_ES |
dc.description.references | Wei D, Liu Y, Zhang H, Huang L, Yu G (2009) Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties. Nano Lett 9:1752–1758 | es_ES |
dc.description.references | Kim KS, Zhao Y, Jang H, Lee SY, Kim JM, Kim KS, Ahn J-H, Choi J-Y, Hong BH (2009) Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457:706–710 | es_ES |
dc.description.references | Gao L, Guest JR, Guisinger NP (2010) Epitaxial graphene on Cu(111). Nano Lett 10:3512–3516 | es_ES |
dc.description.references | Zhao L, Rim KT, Zhou H, He R, Heinz TF, Pinczuk A, Flynn GW, Pasupathy AN (2011) Influence of copper crystal surface on the CVD growth of large area monolayer graphene. Solid State Commun 151:509–513 | es_ES |
dc.description.references | Wood JD, Schmucker SW, Lyons AS, Pop E, Lyding JW (2011) Effects of polycrystalline Cu substrate on graphene growth by chemical vapor deposition. Nano Lett 11:4547–4554 | es_ES |
dc.description.references | Primo A, Esteve-Adell I, Candu N, Coman S, Parvulescu V, Garcia H (2016) One-step pyrolysis preparation of 1.1.1 oriented gold nanoplatelets supported on graphene and six orders of magnitude enhancement of the resulting catalytic activity. Angew Chem-Int Ed 55:607–612 | es_ES |
dc.description.references | Perlmutter P (1992) Conjugate addition reactions in organic synthesis. Pergamon Press, Elmsford | es_ES |
dc.description.references | Christoffers J (1998) Transition-metal catalysis of the Michael reaction of 1,3-dicarbonyl compounds and acceptor-activated alkenes. Eur J Org Chem 7:1259–1266 | es_ES |
dc.description.references | Comelles J, Moreno-Mañas M, Vallribera A (2005) Michael additions catalysed by transition metals and lanthanide species. A review. Arkivoc 9:207–238 | es_ES |
dc.description.references | Saegusa T, Ito Y, Tomitra S, Kinoshita H (1972) Synthetic reactions by complex catalysts. XXIV. A new catalyst of copper-isocyanide complex for the Michael addition. Bull Chem Soc Jpn 45:496–499 | es_ES |
dc.description.references | Hidehiko K, Masahiro S, Nagata C (1999) Acceleration of Michael addition reaction by microwave irradiation in the presence of metal acetylacetonate catalysts. Nippon Kagaku Kaishi 2:145–148 | es_ES |
dc.description.references | Oh E, Susumu K, Blanco-Canosa JB, Medintz IL, Dawson PE, Mattoussi H (2010) Preparation of stable maleimide-functionalized Au nanoparticles and their use in counting surface ligands. Small 6:1273–1278 | es_ES |
dc.description.references | Ba H, Rodriguez-Fernández J, Stefani FD, Feldman J (2010) Immobilization of gold nanoparticles on living cell membranes upon controlled lipid binding. Nano Lett 10:3006–3012 | es_ES |
dc.description.references | Hartlen KD, Ismaili H, Zhu J, Workentin MS (2012) Michael addition reactions for the modification of gold nanoparticles facilitated by hyperbaric conditions. Langmuir 28:864–871 | es_ES |