Mostrar el registro sencillo del ítem
dc.contributor.author | Pérez Peñalver, María José | es_ES |
dc.contributor.author | Sanabria-Codesal, Esther | es_ES |
dc.contributor.author | Moldoveanu, F. | es_ES |
dc.contributor.author | Moldoveanu, Alin | es_ES |
dc.contributor.author | Asavei, Victor | es_ES |
dc.contributor.author | Müller, Andrei | es_ES |
dc.contributor.author | Ionescu, A. | es_ES |
dc.date.accessioned | 2019-06-08T20:03:07Z | |
dc.date.available | 2019-06-08T20:03:07Z | |
dc.date.issued | 2018 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/121826 | |
dc.description.abstract | [EN] This work describes the geometry behind the Smith chart, recent 3D Smith chart tool and previously reported conceptual Hyperbolic Smith chart. We present the geometrical properties of the transformations used in creating them by means of inversive geometry and basic non-Euclidean geometry. The beauty and simplicity of this perspective are complementary to the classical way in which the Smith chart is taught in the electrical engineering community by providing a visual insight that can lead to new developments. Further we extend our previous work where we have just drawn the conceptual hyperbolic Smith chart by providing the equations for its generation and introducing additional properties. | es_ES |
dc.description.sponsorship | This research was partially funded by DGCYT grant number MTM2015-64013-P. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Symmetry (Basel) | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Hyperbolic geometry | es_ES |
dc.subject | Möbius transformation | es_ES |
dc.subject | Smith chart | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | A Review and Mathematical Treatment of Infinity on the Smith Chart, 3D Smith Chart and Hyperbolic Smith Chart | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/sym10100458 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MTM2015-64013-P/ES/SINGULARIDADES, GEOMETRIA GENERICA Y APLICACIONES/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia | es_ES |
dc.description.bibliographicCitation | Pérez Peñalver, MJ.; Sanabria-Codesal, E.; Moldoveanu, F.; Moldoveanu, A.; Asavei, V.; Müller, A.; Ionescu, A. (2018). A Review and Mathematical Treatment of Infinity on the Smith Chart, 3D Smith Chart and Hyperbolic Smith Chart. Symmetry (Basel). 10(10):1-13. https://doi.org/10.3390/sym10100458 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://doi.org/10.3390/sym10100458 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 13 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 10 | es_ES |
dc.description.issue | 10 | es_ES |
dc.identifier.eissn | 2073-8994 | es_ES |
dc.relation.pasarela | S\369391 | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |