- -

Price competition between a macrocell and a small-cell service provider with limited resources and optimal bandwidth user subscription: a game-theoretical model

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Price competition between a macrocell and a small-cell service provider with limited resources and optimal bandwidth user subscription: a game-theoretical model

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Romero-Chavarro, Julián Camilo es_ES
dc.contributor.author Guijarro, Luis es_ES
dc.contributor.author Pla, Vicent es_ES
dc.contributor.author Vidal Catalá, José Ramón es_ES
dc.date.accessioned 2019-06-08T20:03:29Z
dc.date.available 2019-06-08T20:03:29Z
dc.date.issued 2018 es_ES
dc.identifier.issn 1018-4864 es_ES
dc.identifier.uri http://hdl.handle.net/10251/121831
dc.description.abstract [EN] The ever-increasing demand for higher data rates in wireless commutations provides a rationale for small cells deployment. While the physical and technological aspects of small-cell networks have been extensively studied in recent years, the economic analysis has received much less attention. We focus on the economic rationale for a small-cell service provider (SSP) operating a market where an incumbent macrocell service provider (MSP) exists, and competition develops. We analyze such scenario for the case of fixed users by means of Game Theory, specifically through a two-stage game: in the first stage each service provider posts its price according to a Stackelberg game where the MSP is the leader and the SSP is the follower; and, in the second stage, each user chooses both which provider to subscribe to and the optimal amount of bandwidth. A subgame perfect Nash equilibrium is used as a solution concept, and it is derived analytically. We show that the SSP has an incentive to operate in the market and its profit gets higher as SSP's resources increase. Furthermore, users benefit from SSP's operation, which may provide a rationale for a regulatory authority to grant the SSP access to the market, despite the fact that MSP's profit is harmed. Finally, we identify two modes of operation of the system, which depend on the SSP coverage: one where SSP's deployment is limited and the MSP strategy is not affected by SSP competition and takes only the users outside the SSP coverage; and another, where the SSP covers a large area and the MSP competes against the SSP taking a fraction of the users inside the small cells. es_ES
dc.description.sponsorship This work was supported by the Spanish Ministry of Economy and Competitiveness through Grants TIN2013-47272-C2-1-R and BES-2011-045551. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Telecommunication Systems es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Game theory es_ES
dc.subject Stackelberg equilibrium es_ES
dc.subject Wardrop equilibrium es_ES
dc.subject Small-cell networks es_ES
dc.subject User welfare es_ES
dc.subject.classification INGENIERIA TELEMATICA es_ES
dc.title Price competition between a macrocell and a small-cell service provider with limited resources and optimal bandwidth user subscription: a game-theoretical model es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s11235-017-0331-2 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TIN2013-47272-C2-1-R/ES/PLATAFORMA DE SERVICIOS PARA CIUDADES INTELIGENTES CON REDES M2M DENSAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//BES-2011-045551/ES/BES-2011-045551/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Tecnología Eléctrica - Institut de Tecnologia Elèctrica es_ES
dc.description.bibliographicCitation Romero-Chavarro, JC.; Guijarro, L.; Pla, V.; Vidal Catalá, JR. (2018). Price competition between a macrocell and a small-cell service provider with limited resources and optimal bandwidth user subscription: a game-theoretical model. Telecommunication Systems. 67(2):195-209. https://doi.org/10.1007/s11235-017-0331-2 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s11235-017-0331-2 es_ES
dc.description.upvformatpinicio 195 es_ES
dc.description.upvformatpfin 209 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 67 es_ES
dc.description.issue 2 es_ES
dc.relation.pasarela S\350191 es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.description.references Andrews, J. G., Claussen, H., Dohler, M., Rangan, S., & Reed, M. C. (2012). Femtocells: Past, present, and future. IEEE Journal on Selected Areas in Communications, 30(3), 497–508. doi: 10.1109/JSAC.2012.120401 . es_ES
dc.description.references Barron, E. N. (2013). Game theory: An introduction (Vol. 2). John Wiley & Sons. es_ES
dc.description.references Chandrasekhar, V., Andrews, J. G., & Gatherer, A. (2008). Femtocell networks: A survey. IEEE Communications Magazine, 46(9), 59–67. doi: 10.1109/MCOM.2008.4623708 . es_ES
dc.description.references Duan, L., Huang, J., & Shou, B. (2010). Competition with dynamic spectrum leasing. In: IEEE Symposium on New Frontiers in Dynamic Spectrum (DySPAN), pp. 1–11. doi: 10.1109/DYSPAN.2010.5457903 . es_ES
dc.description.references Duan, L., Huang, J., & Shou, B. (2013). Economics of femtocell service provision. IEEE Transactions on Mobile Computing, 12, 2261–2273. es_ES
dc.description.references Duan, L., Shou, B., & Huang, J. (2012). Capacity allocation and pricing strategies for wireless femtocell services. CoRR abs/1205.1196. http://arxiv.org/abs/1205.1196 . es_ES
dc.description.references El-Atty, S. M. A., & Gharsseldien, Z. M. (2016). Backhaul metro cell-based guard channel in femto/macro cellular heterogeneous networks. Telecommunication Systems, 61(4), 645–658. doi: 10.1007/s11235-015-0059-9 . es_ES
dc.description.references Federal Communications Commission. (2003). Report and Order (FCC 05-57): Facilitating opportunities for flexible, efficient and reliable spectrum agile radio technologie. ET Docket No. 03–108. es_ES
dc.description.references Goldsmith, A. (2005). Wireless communications. Cambridge: Cambridge University Press. es_ES
dc.description.references Guijarro, L., Pla, V., Vidal, J. R., & Martinez-Bauset, J. (2012). Femtocell operator entry decision with spectrum bargaining and service competition. IEEE Communications Letters, 16(12), 1976–1979. doi: 10.1109/LCOMM.2012.101712.121645 . es_ES
dc.description.references Gupta, A., & Jha, R. K. (2015). A survey of 5G network: Architecture and emerging technologies. IEEE Access, 3, 1206–1232. doi: 10.1109/ACCESS.2015.2461602 . es_ES
dc.description.references Fu, H. L., Lin, P., & Lin, Y. B. (2013). Reducing signaling overhead for femtocell/macrocell networks. IEEE Transactions on Mobile Computing, 12(8), 1587–1597. doi: 10.1109/TMC.2012.132 . es_ES
dc.description.references Kang, X., Zhang, R., & Motani, M. (2012). Price-based resource allocation for spectrum-sharing femtocell networks: A stackelberg game approach. IEEE Journal on Selected Areas in Communications, 30(3), 538–549. doi: 10.1109/JSAC.2012.120404 . es_ES
dc.description.references Landstrom, S., Furuskar, A., Johansson, K., Falconetti, L., & Kronestedt, F. (2011). Heterogeneous networks increasing cellular capacity. Ericsson Review, 89(3), 4–9. es_ES
dc.description.references Ogawa, K., Hattori, T., & Yoshida, H. (1994). Optimum multi-layered cell architecture for personal communication systems with high degree of mobility. In: IEEE 44th Vehicular Technology Conference, pp. 644–648. es_ES
dc.description.references Romero, J., & Guijarro, L. (2013). Competition between primary and secondary operators with spectrum leasing and optimal spectrum subscription by users. In: IEEE 24th International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC Workshops), pp. 143–147. doi: 10.1109/PIMRCW.2013.6707853 . es_ES
dc.description.references Sandler, K. (2009, February). House calls: Femtocells promise to boost the cellphone signals inside your home. The Wall Street Journal. es_ES
dc.description.references Sengupta, S., & Chatterjee, M. (2009). An economic framework for dynamic spectrum access and service pricing. IEEE/ACM Transactions on Networking, 17(4), 1200–1213. doi: 10.1109/TNET.2008.2007758 . es_ES
dc.description.references Shetty, N., Parekh, S., & Walrand, J. (2009). Economics of femtocells. In: IEEE Global Telecommunications Conference, GLOBECOM, pp. 1–6. doi: 10.1109/GLOCOM.2009.5426129 . es_ES
dc.description.references LaVallee, A. (2009). AT&T to New York and San Francisco: We are working on it. The Wall Street Journal. es_ES
dc.description.references Wardrop, J. (1952). Some theoretical aspects of road traffic research. Proceedings of the Institute of Civil Engineers, 1, 325–378. es_ES
dc.description.references Yi, Y., Zhang, J., Zhang, Q., & Jiang, T. (2012). Spectrum leasing to femto service provider with hybrid access. In: Proceedings IEEE INFOCOM, pp. 1215–1223. doi: 10.1109/INFCOM.2012.6195482 . es_ES
dc.description.references Yun, S., Yi, Y., Cho, D. H., & Mo, J. (2011). Open or close: On the sharing of femtocells. In: Proceedings IEEE INFOCOM, pp. 116–120. doi: 10.1109/INFCOM.2011.5934894 . es_ES
dc.description.references Zhang, H., Huang, L., Xu, H., & Sun, Q. (2015). Cooperative optimal pricing for stochastic access control in overlaid radio access networks. Telecommunication Systems, 60(1), 3–16. es_ES
dc.description.references Zhu, K., Hossain, E., & Niyato, D. (2014). Pricing, spectrum sharing, and service selection in two-tier small cell networks: A hierarchical dynamic game approach. IEEE Transactions on Mobile Computing, 13(8), 1843–1856. doi: 10.1109/TMC.2013.96 . es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem