- -

Information retrieval in multimedia databases using relevance feedback algorithms. Applying logistic regression to relevance feedback in image retrieval systems

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Information retrieval in multimedia databases using relevance feedback algorithms. Applying logistic regression to relevance feedback in image retrieval systems

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.advisor González Salvador, Alberto es_ES
dc.contributor.advisor León, Teresa es_ES
dc.contributor.advisor Ayala, Guillermo es_ES
dc.contributor.author Zuccarello, Pedro Diego es_ES
dc.date.accessioned 2011-10-19T12:17:53Z
dc.date.available 2011-10-19T12:17:53Z
dc.date.created 2007-09-07
dc.date.issued 2011-10-19
dc.identifier.uri http://hdl.handle.net/10251/12196
dc.description.abstract This master tesis deals with the problem of image retrieval from large image databases. A particularly interesting problem is the retrieval of all images which are similar to one in the user's mind, taking into account his/her feedback which is expressed as positive or negative preferences for the images that the system progressively shows during the search. Here, a novel algorithm is presented for the incorporation of user preferences in an image retrieval system based exclusively on the visual content of the image, which is stored as a vector of low-level features. The algorithm considers the probability of an image belonging to the set of those sought by the user, and models the logit of this probability as the output of a linear model whose inputs are the low level image features. The image database is ranked by the output of the model and shown to the user, who selects a few positive and negative samples, repeating the process in an iterative way until he/she is satisfied. The problem of the small sample size with respect to the number of features is solved by adjusting several partial linear models and combining their relevance probabilities by means of an ordered weighted averaged (OWA) operator. Experiments were made with 40 users and they exhibited good performance in finding a target image (4 iterations on average) in a database of about 4700 images es_ES
dc.format.extent 57 es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Recuperación de imágenes por contenidos es_ES
dc.subject Realimentación de relevancias es_ES
dc.subject Regresión logística es_ES
dc.subject.classification TEORIA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.subject.other Máster Universitario en Tecnologías, Sistemas y Redes de Comunicaciones-Màster Universitari en Tecnologies, Sistemes i Xarxes de Comunicacions es_ES
dc.title Information retrieval in multimedia databases using relevance feedback algorithms. Applying logistic regression to relevance feedback in image retrieval systems es_ES
dc.type Tesis de máster es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Servicio de Alumnado - Servei d'Alumnat es_ES
dc.description.bibliographicCitation Zuccarello, PD. (2007). Information retrieval in multimedia databases using relevance feedback algorithms. Applying logistic regression to relevance feedback in image retrieval systems. http://hdl.handle.net/10251/12196 es_ES
dc.description.accrualMethod Archivo delegado es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem