- -

Large deformation frictional contact analysis with immersed boundary method

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Large deformation frictional contact analysis with immersed boundary method

Mostrar el registro completo del ítem

Navarro-Jiménez, J.; Tur Valiente, M.; Albelda Vitoria, J.; Ródenas, JJ. (2018). Large deformation frictional contact analysis with immersed boundary method. Computational Mechanics. 62(4):853-870. https://doi.org/10.1007/s00466-017-1533-x

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/122038

Ficheros en el ítem

Metadatos del ítem

Título: Large deformation frictional contact analysis with immersed boundary method
Autor: Navarro-Jiménez, José-Manuel Tur Valiente, Manuel Albelda Vitoria, José Ródenas, Juan José
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials
Fecha difusión:
Fecha de fin de embargo: 2019-10-01
Resumen:
[EN] This paper proposes a method of solving 3D large deformation frictional contact problems with the Cartesian Grid Finite Element Method. A stabilized augmented Lagrangian contact formulation is developed using a smooth ...[+]
Palabras clave: Contact , Friction , Immersed boundary , Ficticious domain , CgFEM , Stabilized
Derechos de uso: Reserva de todos los derechos
Fuente:
Computational Mechanics. (issn: 0178-7675 )
DOI: 10.1007/s00466-017-1533-x
Editorial:
Springer-Verlag
Versión del editor: http://doi.org/10.1007/s00466-017-1533-x
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//DPI2013-46317-R/ES/PERSONALIZACION DE IMPLANTES MEDIANTE MODELOS DE ELEMENTOS FINITOS A PARTIR DE IMAGENES MEDICAS 3D/
info:eu-repo/grantAgreement/GVA//PROMETEO%2F2016%2F007/ES/Modelado numérico avanzado en ingeniería mecánica/
Agradecimientos:
The authors wish to thank the Spanish Ministerio de Economia y Competitividad the Generalitat Valenciana and the Universitat Politecnica de Valencia for their financial support received through the projects DPI2013-46317-R, ...[+]
Tipo: Artículo

References

ANSYS$$^{\textregistered }$$® Academic Research Mechanical, Release 16.2

Alart P, Curnier A (1991) A mixed formulation for frictional contact problems prone to Newton like solution methods. Comput Methods Appl Mech Eng 92(3):353–375. https://doi.org/10.1016/0045-7825(91)90022-X

Annavarapu C, Hautefeuille M, Dolbow JE (2012) Stable imposition of stiff constraints in explicit dynamics for embedded finite element methods. Int J Numer Methods Eng 92(June):206–228. https://doi.org/10.1002/nme.4343 [+]
ANSYS$$^{\textregistered }$$® Academic Research Mechanical, Release 16.2

Alart P, Curnier A (1991) A mixed formulation for frictional contact problems prone to Newton like solution methods. Comput Methods Appl Mech Eng 92(3):353–375. https://doi.org/10.1016/0045-7825(91)90022-X

Annavarapu C, Hautefeuille M, Dolbow JE (2012) Stable imposition of stiff constraints in explicit dynamics for embedded finite element methods. Int J Numer Methods Eng 92(June):206–228. https://doi.org/10.1002/nme.4343

Annavarapu C, Hautefeuille M, Dolbow JE (2014) A Nitsche stabilized finite element method for frictional sliding on embedded interfaces. Part I: single interface. Comput Methods Appl Mech Eng 268:417–436. https://doi.org/10.1016/j.cma.2013.09.002

Annavarapu C, Settgast RR, Johnson SM, Fu P, Herbold EB (2015) A weighted nitsche stabilized method for small-sliding contact on frictional surfaces. Comput Methods Appl Mech Eng 283:763–781. https://doi.org/10.1016/j.cma.2014.09.030

Baiges J, Codina R, Henke F, Shahmiri S, Wall WA (2012) A symmetric method for weakly imposing Dirichlet boundary conditions in embedded finite element meshes. Int J Numer Methods Eng 90(5):636–658. https://doi.org/10.1002/nme.3339

Béchet É, Moës N, Wohlmuth B (2009) A stable Lagrange multiplier space for stiff interface conditions within the extended finite element method. Int J Numer Methods Eng 78(8):931–954. https://doi.org/10.1002/nme.2515

Béchet E, Moës N, Wohlmuth B (2009) A stable Lagrange multiplier space for stiff interface conditions within the extended finite element method. Int J Numer Methods Eng 78:931–954. https://doi.org/10.1002/nme.2515

Belgacem F, Hild P, Laborde P (1998) The mortar finite element method for contact problems. Math Comput Model 28(4–8):263–271. https://doi.org/10.1016/S0895-7177(98)00121-6

De Lorenzis L, Wriggers P, Zavarise G (2012) A mortar formulation for 3D large deformation contact using NURBS-based isogeometric analysis and the augmented Lagrangian method. Comput Mech 49(1):1–20. https://doi.org/10.1007/s00466-011-0623-4

Dittmann M, Franke M, Temizer I, Hesch C (2014) Isogeometric Analysis and thermomechanical Mortar contact problems. Comput Methods Appl Mech Eng 274:192–212. https://doi.org/10.1016/j.cma.2014.02.012

Dolbow J, Moës N, Belytschko T (2001) An extended finite element method for modeling crack growth with frictional contact. Comput Methods Appl Mech Eng 190:6825–6846. https://doi.org/10.1016/S0045-7825(01)00260-2

Dolbow JE, Devan a (2004) Enrichment of enhanced assumed strain approximations for representing strong discontinuities: addressing volumetric incompressibility and the discontinuous patch test. Int J Numer Methods Eng 59(1):47–67. https://doi.org/10.1002/nme.862

Fischer KA, Wriggers P (2006) Mortar based frictional contact formulation for higher order interpolations using the moving friction cone. Comput Methods Appl Mech Eng 195(37–40):5020–5036. https://doi.org/10.1016/j.cma.2005.09.025

Giovannelli L, Ródenas J, Navarro-Jiménez J, Tur M (2017) Direct medical image-based Finite Element modelling for patient-specific simulation of future implants. Finite Elem Anal Des. https://doi.org/10.1016/j.finel.2017.07.010

Gitterle M, Popp A, Gee MW, Wall WA (2010) Finite deformation frictional mortar contact using a semi-smooth Newton method with consistent linearization. Int J Numer Methods Eng. https://doi.org/10.1002/nme.2907

Hammer ME (2013) Frictional mortar contact for finite deformation problems with synthetic contact kinematics. Comput Mech 51(6):975–998. https://doi.org/10.1007/s00466-012-0780-0

Hansbo P, Rashid A, Salomonsson K (2015) Least-squares stabilized augmented Lagrangian multiplier method for elastic contact. Finite Elem Anal Des 116:32–37. https://doi.org/10.1016/j.finel.2016.03.005

Haslinger J, Renard Y (2009) A new fictitious domain approach inspired by the extended finite element method. SIAM J Numer Anal 47(2):1474–1499. https://doi.org/10.1137/070704435

Hautefeuille M, Annavarapu C, Dolbow JE (2012) Robust imposition of Dirichlet boundary conditions on embedded surfaces. Int J Numer Methods Eng 90:40–64. https://doi.org/10.1002/nme.3306

Heintz P, Hansbo P (2006) Stabilized Lagrange multiplier methods for bilateral elastic contact with friction. Comput Methods Appl Mech Eng 195(33–36):4323–4333. https://doi.org/10.1016/j.cma.2005.09.008

Hughes T, Cottrell J, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput Methods Appl Mech Eng 194(39–41):4135–4195. https://doi.org/10.1016/j.cma.2004.10.008

Laursen T (2003) Computational contact and impact mechanics: fundamentals of modelling interfacial phenomena in nonlinear finite element analysis. Springer, Berlin

Liu F, Borja RI (2008) A contact algorithm for frictional crack propagation with the extended finite element method. Int J Numer Methods Eng 76(June):1489–1512. https://doi.org/10.1002/nme.2376

Liu F, Borja RI (2010) Stabilized low-order finite elements for frictional contact with the extended finite element method. Comput Methods Appl Mech Eng 199(37–40):2456–2471. https://doi.org/10.1016/j.cma.2010.03.030

Marco O, Sevilla R, Zhang Y, Ródenas JJ, Tur M (2015) Exact 3D boundary representation in finite element analysis based on Cartesian grids independent of the geometry. Int J Numer Methods Eng 103(6):445–468. https://doi.org/10.1002/nme.4914

Nadal E, Ródenas JJ, Albelda J, Tur M, Tarancón JE, Fuenmayor FJ (2013) Efficient finite element methodology based on cartesian grids: application to structural shape optimization. Abstr Appl Anal 2013:1–19. https://doi.org/10.1155/2013/953786

Neto D, Oliveira M, Menezes L, Alves J (2016) A contact smoothing method for arbitrary surface meshes using nagata patches. Comput Methods Appl Mech Eng 299:283–315. https://doi.org/10.1016/j.cma.2015.11.011

Nistor I, Guiton MLE, Massin P, Moës N, Géniaut S (2009) An X-FEM approach for large sliding contact along discontinuities. Int J Numer Methods Eng 78:1407–1435. https://doi.org/10.1002/nme.2532

Oliver J, Hartmann S, Cante JC, Weyler R, Hernández JA (2009) A contact domain method for large deformation frictional contact problems. Part 1: theoretical basis. Comput Methods Appl Mech Eng 198:2591–2606. https://doi.org/10.1016/j.cma.2009.03.006

Piegl L, Tiller W (1995) The NURBS Book. Springer, Berlin

Pietrzak G, Curnier A (1999) Large deformation frictional contact mechanics: continuum formulation and augmented Lagrangian treatment. Comput Methods Appl Mech Eng 177(3–4):351–381. https://doi.org/10.1016/S0045-7825(98)00388-0

Poulios K, Renard Y (2015) An unconstrained integral approximation of large sliding frictional contact between deformable solids. Comput Struct 153:75–90. https://doi.org/10.1016/j.compstruc.2015.02.027

Puso MA, Laursen TA (2004) A mortar segment-to-segment frictional contact method for large deformations. Comput Methods Appl Mech Eng 193(45–47):4891–4913. https://doi.org/10.1016/j.cma.2004.06.001

Renard Y (2013) Generalized Newton’s methods for the approximation and resolution of frictional contact problems in elasticity. Comput Methods Appl Mech Eng 256:38–55. https://doi.org/10.1016/j.cma.2012.12.008

Ribeaucourt R, Baietto-Dubourg MC, Gravouil A (2007) A new fatigue frictional contact crack propagation model with the coupled X-FEM/LATIN method. Comput Methods Appl Mech Eng 196:3230–3247. https://doi.org/10.1016/j.cma.2007.03.004

Ródenas JJ, Tur M, Fuenmayor FJ, Vercher A (2007) Improvement of the superconvergent patch recovery technique by the use of constraint equations: The SPR-C technique. Int J Numer Methods Eng 70:705–727. https://doi.org/10.1002/nme.1903

Rogers DF (2001) An introduction to NURBS: with historical perspective. Elsevier, Amsterdam

Temizer I, Wriggers P, Hughes TJR (2012) Three-dimensional mortar-based frictional contact treatment in isogeometric analysis with NURBS. Comput Methods Appl Mech Eng 209–212:115–128. https://doi.org/10.1016/j.cma.2011.10.014

Tur M, Albelda J, Marco O, Ródenas JJ (2015) Stabilized method of imposing Dirichlet boundary conditions using a recovered stress field. Comput Methods Appl Mech Eng 296:352–375. https://doi.org/10.1016/j.cma.2015.08.001

Tur M, Albelda J, Navarro-Jimenez JM, Rodenas JJ (2015) A modified perturbed Lagrangian formulation for contact problems. Comput Mech. https://doi.org/10.1007/s00466-015-1133-6

Tur M, Fuenmayor FJ, Wriggers P (2009) A mortar-based frictional contact formulation for large deformations using Lagrange multipliers. Comput Methods Appl Mech Eng 198(37–40):2860–2873. https://doi.org/10.1016/j.cma.2009.04.007

Tur M, Giner E, Fuenmayor F, Wriggers P (2012) 2d contact smooth formulation based on the mortar method. Comput Methods Appl Mech Eng 247–248:1–14. https://doi.org/10.1016/j.cma.2012.08.002

Wriggers P (2006) Computational contact mechanics. Springer, Berlin

Wriggers P (2008) Nonlinear finite element methods. Springer, Berlin. https://doi.org/10.1007/978-3-540-71001-1

Yang B, Laursen TA, Meng X (2005) Two dimensional mortar contact methods for large deformation frictional sliding. Int J Numer Methods Eng 62(9):1183–1225. https://doi.org/10.1002/nme.1222

Zienkiewicz OC, Zhu JZ (1992) The superconvergent patch recovery and a posteriori error estimates. Part 1: the recovery technique. Int J Numer Methods. https://doi.org/10.1002/nme.1620330702

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem