- -

Convolution-continuous bilinear operators acting on Hilbert spaces of integrable functions

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Convolution-continuous bilinear operators acting on Hilbert spaces of integrable functions

Show full item record

Erdogan, E.; Calabuig, JM.; Sánchez Pérez, EA. (2018). Convolution-continuous bilinear operators acting on Hilbert spaces of integrable functions. Annals of Functional Analysis. 9(2):166-179. https://doi.org/10.1215/20088752-2017-003/1

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/122261

Files in this item

Item Metadata

Title: Convolution-continuous bilinear operators acting on Hilbert spaces of integrable functions
Author:
UPV Unit: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Issued date:
Abstract:
[EN] We study bilinear operators acting on a product of Hilbert spaces of integrable functions¿zero-valued for couples of functions whose convolution equals zero¿that we call convolution-continuous bilinear maps. We prove ...[+]
Subjects: Convolution , Bilinear operator , Factorization , Fourier transform , Summability , Product
Copyrigths: Reserva de todos los derechos
Source:
Annals of Functional Analysis. (issn: 2008-8752 )
DOI: 10.1215/20088752-2017-003/1
Publisher:
Duke University Press
Publisher version: http://doi.org/10.1215/20088752-2017-003/1
Thanks:
Erdogan's work was supported by TUBITAK, the Scientific and Technological Research Council of Turkey. Calabuig's work was supported by Ministerio de Economia, Industria y Competitividad (MINECO) grant MTM2014-53009-P. ...[+]
Type: Artículo

This item appears in the following Collection(s)

Show full item record