- -

Hydrogenation of CO2 on Nickel-Iron Nanoparticles Under Sunlight Irradiation

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Hydrogenation of CO2 on Nickel-Iron Nanoparticles Under Sunlight Irradiation

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Puga, Alberto V. es_ES
dc.contributor.author Corma Canós, Avelino es_ES
dc.date.accessioned 2019-06-16T20:00:38Z
dc.date.available 2019-06-16T20:00:38Z
dc.date.issued 2018 es_ES
dc.identifier.issn 1022-5528 es_ES
dc.identifier.uri http://hdl.handle.net/10251/122275
dc.description.abstract [EN] Nickel-iron oxide nanoparticles were prepared by a simple mixed oxalate precursor decomposition method and used as catalysts for the sunlight-promoted CO2 hydrogenation reaction. The composition of the NiyFe1-yOx materials was designed to cover the entire Ni/Fe ratio range (y=1, 0.9, 0.75, 0.5, 0.25, 0.1, 0). Characterisation was undertaken by means of elemental analyses, X-ray diffraction and high resolution transmission electron microscopy. The pure nickel material (NiOx) contained crystalline NiO nanoparticles. Upon introducing lower proportions of iron in Ni9FeOx and Ni3FeOx, NiO was the only crystalline phase, along with increasing amounts of amorphous iron oxides. Higher iron contents resulted in the co-existence of NiO and -Fe2O3 domains at the nanoscale in NiFeOx, NiFe3Ox and NiFe9Ox, whereas the pure iron material (FeOx) was composed of -Fe2O3 as the only crystalline phase and a significant fraction of amorphous iron oxides. The hydrogenation of carbon dioxide was tested on the materials under simulated sunlight irradiation, and the activities and selectivities investigated as initial CO2 conversion rates and product distributions, respectively. The introduction of iron was beneficial for the activation of CO2, due to the known ability of this metal for promoting the reverse water-gas shift (rWGS) reaction. On the other hand, it was proven that nickel and iron favoured hydrogenation and chain growth processes, respectively. Moreover, the lack of hydrogenation sites in the pure iron material results in the expected preferential generation of olefins. Results for the entire compositional range draw a clear trend towards the enhanced formation of short-chain alkanes at middle iron contents, most likely owing to the existence of junctions between nickel and iron oxides at the nanoscale, and the related interfaces providing rWGS, chain growth and hydrogenation sites in close vicinity. The resulting hydrocarbon products, presumably produced by the efficient combination of thermal and photonic effects, can be considered as solar fuel replacements for natural gas and liquefied petroleum gases. es_ES
dc.description.sponsorship Financial support from the Spanish Government-MINECO [Ministerio de Economia, Industria y Competitividad, Gobierno de Espana (ES)] through "Severo Ochoa" (SEV 2016-0683) is acknowledged. AVP also thanks the Spanish Government (Agencia Estatal de Investigacion) [Ministerio de Economia, Industria y Competitividad, Gobierno de Espana (ES)] and the European Union (European Regional Development Fund) for a grant for young researchers (CTQ2015-74138-JIN, AEI/FEDER/UE). es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Topics in Catalysis es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Carbon dioxide es_ES
dc.subject Solar fuels es_ES
dc.subject Hydrogenation es_ES
dc.subject Nickel catalysts es_ES
dc.subject Iron catalysts es_ES
dc.subject.classification QUIMICA ANALITICA es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title Hydrogenation of CO2 on Nickel-Iron Nanoparticles Under Sunlight Irradiation es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s11244-018-1030-2 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//SEV-2016-0683/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CTQ2015-74138-JIN/ES/PRODUCCION FOTOCATALITICA DE HIDROGENO MEDIANTE ENERGIA SOLAR A PARTIR DE BIOMASA O DE AGUAS RESIDUALES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Puga, AV.; Corma Canós, A. (2018). Hydrogenation of CO2 on Nickel-Iron Nanoparticles Under Sunlight Irradiation. Topics in Catalysis. 61(18-19):1810-1819. https://doi.org/10.1007/s11244-018-1030-2 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.org/10.1007/s11244-018-1030-2 es_ES
dc.description.upvformatpinicio 1810 es_ES
dc.description.upvformatpfin 1819 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 61 es_ES
dc.description.issue 18-19 es_ES
dc.relation.pasarela S\385873 es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Aresta M, Dibenedetto A, Angelini A (2014) Catalysis for the valorization of exhaust carbon: from CO2 to chemicals, materials, and fuels. Technological use of CO2. Chem Rev 114:1709–1742 es_ES
dc.description.references Centi G, Perathoner S (2009) Opportunities and prospects in the chemical recycling of carbon dioxide to fuels. Catal Today 148:191–205 es_ES
dc.description.references Porosoff MD, Yan B, Chen JG (2016) Catalytic reduction of CO2 by H2 for synthesis of CO, methanol and hydrocarbons: challenges and opportunities. Energy Environ Sci 9:62–73 es_ES
dc.description.references Dorner RW, Hardy DR, Williams FW, Willauer HD (2010) Heterogeneous catalytic CO2 conversion to value-added hydrocarbons. Energy Environ Sci 3:884–890 es_ES
dc.description.references Prieto G (2017) Carbon dioxide hydrogenation into higher hydrocarbons and oxygenates: thermodynamic and kinetic bounds and progress with heterogeneous and homogeneous catalysis. ChemSusChem 10:1056–1070 es_ES
dc.description.references Wang W, Wang S, Ma X, Gong J (2011) Recent advances in catalytic hydrogenation of carbon dioxide. Chem Soc Rev 40:3703–3727 es_ES
dc.description.references Centi G, Quadrelli EA, Perathoner S (2013) Catalysis for CO2 conversion: a key technology for rapid introduction of renewable energy in the value chain of chemical industries. Energy Environ Sci 6:1711–1731 es_ES
dc.description.references Balzani V, Credi A, Venturi M (2008) Photochemical conversion of solar energy. ChemSusChem 1:26–58 es_ES
dc.description.references Balzani V, Armaroli N (2010) Energy for a sustainable world: from the oil age to a sun-powered future. Wiley, Hoboken es_ES
dc.description.references Centi G, Perathoner S (2010) Towards solar fuels from water and CO2. ChemSusChem 3:195–208 es_ES
dc.description.references Cook TR, Dogutan DK, Reece SY, Surendranath Y, Teets TS, Nocera DG (2010) Solar energy supply and storage for the legacy and nonlegacy worlds. Chem Rev 110:6474–6502 es_ES
dc.description.references Izumi Y (2013) Recent advances in the photocatalytic conversion of carbon dioxide to fuels with water and/or hydrogen using solar energy and beyond. Coord Chem Rev 257:171–186 es_ES
dc.description.references Corma A, Garcia H (2013) Photocatalytic reduction of CO2 for fuel production: possibilities and challenges. J Catal 308:168–175 es_ES
dc.description.references Puga AV (2016) Light-promoted hydrogenation of carbon dioxide—an overview. Top Catal 59:1268–1278 es_ES
dc.description.references Sastre F, Puga AV, Liu L, Corma A, García H (2014) Complete photocatalytic reduction of CO2 to methane by H2 under solar light irradiation. J Am Chem Soc 136:6798–6801 es_ES
dc.description.references Meng X, Wang T, Liu L, Ouyang S, Li P, Hu H, Kako T, Iwai H, Tanaka A, Ye J (2014) Photothermal conversion of CO2 into CH4 with H2 over group VIII nanocatalysts: an alternative approach for solar fuel production. Angew Chem Int Ed 53:11478–11482 es_ES
dc.description.references Zhang H, Wang T, Wang J, Liu H, Dao TD, Li M, Liu G, Meng X, Chang K, Shi L, Nagao T, Ye J (2016) Surface-plasmon-enhanced photodriven CO2 reduction catalyzed by metal–organic-framework-derived iron nanoparticles encapsulated by ultrathin carbon layers. Adv Mater 28:3703–3710 es_ES
dc.description.references Liu L, Puga AV, Cored J, Concepción P, Pérez-Dieste V, García H, Corma A (2018) Sunlight-assisted hydrogenation of CO2 into ethanol and C 2+ hydrocarbons by sodium-promoted Co@C nanocomposites. Appl Catal B 235:186–196 es_ES
dc.description.references Li Z, Liu J, Zhao Y, Waterhouse GIN, Chen G, Shi R, Zhang X, Liu X, Wei Y, Wen X-D, Wu L-Z, Tung C-H, Zhang T (2018) Co-based catalysts derived from layered-double-hydroxide nanosheets for the photothermal production of light olefins. Adv Mater 31:1800527 es_ES
dc.description.references Chen G, Gao R, Zhao Y, Li Z, Waterhouse GIN, Shi R, Zhao J, Zhang M, Shang L, Sheng G, Zhang X, Wen X, Wu L-Z, Tung C-H, Zhang T (2017) Alumina-supported CoFe alloy catalysts derived from layered-double-hydroxide nanosheets for efficient photothermal CO2 hydrogenation to hydrocarbons. Adv Mater 30:1704663 es_ES
dc.description.references Zhao Y, Zhao B, Liu J, Chen G, Gao R, Yao S, Li M, Zhang Q, Gu L, Xie J, Wen X, Wu L-Z, Tung C-H, Ma D, Zhang T (2016) Oxide-modified nickel photocatalysts for the production of hydrocarbons in visible light. Angew Chem 128:4287–4291 es_ES
dc.description.references O’Brien PG, Sandhel A, Wood TE, Jelle AA, Hoch LB, Perovic DD, Mims CA, Ozin GA (2014) Photomethanation of gaseous CO2 over Ru/silicon nanowire catalysts with visible and near-infrared photons. Adv Sci 1:1400001 es_ES
dc.description.references Hoch LB, Wood TE, O’Brien PG, Liao K, Reyes LM, Mims CA, Ozin GA (2014) The rational design of a single-component photocatalyst for gas-phase CO2 reduction using both UV and visible light. Adv Sci 1:1400013 es_ES
dc.description.references Sun W, Qian C, He L, Ghuman KK, Wong APY, Jia J, Jelle AA, O/‘Brien PG, Reyes LM, Wood TE, Helmy AS, Mims CA, Singh CV, Ozin GA (2016) Heterogeneous reduction of carbon dioxide by hydride-terminated silicon nanocrystals. Nat Commun 7:12553 es_ES
dc.description.references Lo C-C, Hung C-H, Yuan C-S, Wu J-F (2007) Photoreduction of carbon dioxide with H2 and H2O over TiO2 and ZrO2 in a circulated photocatalytic reactor. Sol Energy Mater Sol Cells 91:1765–1774 es_ES
dc.description.references Cheng Y-H, Nguyen V-H, Chan H-Y, Wu JCS, Wang W-H (2015) Photo-enhanced hydrogenation of CO2 to mimic photosynthesis by CO co-feed in a novel twin reactor. Appl Energy 147:318–324 es_ES
dc.description.references Porosoff MD, Chen JG (2013) Trends in the catalytic reduction of CO2 by hydrogen over supported monometallic and bimetallic catalysts. J Catal 301:30–37 es_ES
dc.description.references Gao J, Liu Q, Gu F, Liu B, Zhong Z, Su F (2015) Recent advances in methanation catalysts for the production of synthetic natural gas. RSC Adv 5:22759–22776 es_ES
dc.description.references Khodakov AY, Chu W, Fongarland P (2007) Advances in the development of novel cobalt Fischer–Tropsch catalysts for synthesis of long-chain hydrocarbons and clean fuels. Chem Rev 107:1692–1744 es_ES
dc.description.references Abelló S, Montané D (2011) Exploring iron-based multifunctional catalysts for Fischer–Tropsch synthesis: a review. ChemSusChem 4:1538–1556 es_ES
dc.description.references de Smit E, Weckhuysen BM (2008) The renaissance of iron-based Fischer–Tropsch synthesis: on the multifaceted catalyst deactivation behaviour. Chem Soc Rev 37:2758–2781 es_ES
dc.description.references Riedel T, Claeys M, Schulz H, Schaub G, Nam SS, Jun KW, Choi MJ, Kishan G, Lee KW (1999) Comparative study of Fischer–Tropsch synthesis with H2/CO and H2/CO2 syngas using Fe- and Co-based catalysts. Appl Catal A 186:201–213 es_ES
dc.description.references Gnanamani MK, Jacobs G, Hamdeh HH, Shafer WD, Liu F, Hopps SD, Thomas GA, Davis BH (2016) Hydrogenation of carbon dioxide over Co–Fe bimetallic catalysts. ACS Catal 6:913–927 es_ES
dc.description.references Satthawong R, Koizumi N, Song C, Prasassarakich P (2015) Light olefin synthesis from CO2 hydrogenation over K-promoted Fe–Co bimetallic catalysts. Catal Today 251:34–40 es_ES
dc.description.references Li T, Wang H, Yang Y, Xiang H, Li Y (2014) Study on an iron–nickel bimetallic Fischer–Tropsch synthesis catalyst. Fuel Process Technol 118:117–124 es_ES
dc.description.references Xu Y, Schoonen MAA (2000) The absolute energy positions of conduction and valence bands of selected semiconducting minerals. Am Miner 85:543–556 es_ES
dc.description.references Wang W, Gong J (2011) Methanation of carbon dioxide: an overview. Front Chem Sci Eng 5:2–10 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem