- -

Dynamic elementary mode modelling of non-steady state flux data

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Dynamic elementary mode modelling of non-steady state flux data

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Folch-Fortuny, Abel es_ES
dc.contributor.author Teusink, Bas es_ES
dc.contributor.author Hoefsloot, Huub C.J. es_ES
dc.contributor.author Smilde, Age K. es_ES
dc.contributor.author Ferrer, Alberto es_ES
dc.date.accessioned 2019-06-21T20:02:50Z
dc.date.available 2019-06-21T20:02:50Z
dc.date.issued 2018 es_ES
dc.identifier.issn 1752-0509 es_ES
dc.identifier.uri http://hdl.handle.net/10251/122511
dc.description.abstract [EN] A novel framework is proposed to analyse metabolic fluxes in non-steady state conditions, based on the new concept of dynamic elementary mode (dynEM): an elementary mode activated partially depending on the time point of the experiment. es_ES
dc.description.sponsorship This research work was partially supported by the Spanish Ministry of Economy and Competitiveness under the project DPI2014-55276-C5-1R. es_ES
dc.language Inglés es_ES
dc.publisher Springer (Biomed Central Ltd.) es_ES
dc.relation.ispartof BMC Systems Biology es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Metabolic network es_ES
dc.subject Elementary mode es_ES
dc.subject Dynamic modelling es_ES
dc.subject Principal component analysis es_ES
dc.subject Principal elementary mode analysis es_ES
dc.subject Partial least squares regression discriminant analysis es_ES
dc.subject N-way,Cross validation es_ES
dc.subject.classification ESTADISTICA E INVESTIGACION OPERATIVA es_ES
dc.title Dynamic elementary mode modelling of non-steady state flux data es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1186/s12918-018-0589-3 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//DPI2014-55276-C5-1-R/ES/BIOLOGIA SINTETICA PARA LA MEJORA EN BIOPRODUCCION: DISEÑO, OPTIMIZACION, MONITORIZACION Y CONTROL/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat es_ES
dc.description.bibliographicCitation Folch-Fortuny, A.; Teusink, B.; Hoefsloot, HC.; Smilde, AK.; Ferrer, A. (2018). Dynamic elementary mode modelling of non-steady state flux data. BMC Systems Biology. 12:1-15. https://doi.org/10.1186/s12918-018-0589-3 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.org/10.1186/s12918-018-0589-3 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 15 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 12 es_ES
dc.identifier.pmid 29914483
dc.identifier.pmcid PMC6006576
dc.relation.pasarela S\377830 es_ES
dc.contributor.funder Ministerio de Economía y Empresa es_ES
dc.description.references Bro R, Smilde AK. Principal component analysis. Anal Methods. 2014; 6(9):2812–31. es_ES
dc.description.references González-Martínez JM, Folch-Fortuny A, Llaneras F, Tortajada M, Picó J, Ferrer A. Metabolic flux understanding of Pichia pastoris grown on heterogenous culture media. Chemometr Intell Lab Syst. 2014; 134:89–99. es_ES
dc.description.references Barrett CL, Herrgard MJ, Palsson B. Decomposing complex reaction networks using random sampling, principal component analysis and basis rotation. BMC Syst Biol. 2009; 3(30):1–8. es_ES
dc.description.references Jaumot J, Gargallo R, De Juan A, Tauler R. A graphical user-friendly interface for MCR-ALS: A new tool for multivariate curve resolution in MATLAB. Chemometr Intell Lab Syst. 2005; 76(1):101–10. es_ES
dc.description.references Folch-Fortuny A, Tortajada M, Prats-Montalbán JM, Llaneras F, Picó J, Ferrer A. MCR-ALS on metabolic networks: Obtaining more meaningful pathways. Chemometr Intell Lab Syst. 2015; 142:293–303. es_ES
dc.description.references Folch-Fortuny A, Marques R, Isidro IA, Oliveira R, Ferrer A. Principal elementary mode analysis (PEMA). Mol BioSyst. 2016; 12(3):737–46. es_ES
dc.description.references Hood L. Systems biology: Integrating technology, biology, and computation. Mech Ageing Dev. 2003; 124(1):9–16. es_ES
dc.description.references Teusink B, Passarge J, Reijenga CA, Esgalhado E, van der Weijden CC, Schepper M, Walsh MC, Bakker BM, van Dam K, Westerhoff HV, Snoep JL. Can yeast glycolysis be understood in terms of in vitro kinetics of the constituent enzymes? Testing biochemistry. Eur J Biochem / FEBS. 2000; 267(17):5313–29. es_ES
dc.description.references Mahadevan R, Edwards JS, Doyle FJ. Dynamic flux balance analysis of diauxic growth in Escherichia coli. Biophys J. 2002; 83(3):1331–40. es_ES
dc.description.references Willemsen AM, Hendrickx DM, Hoefsloot HCJ, Hendriks MMWB, Wahl SA, Teusink B, Smilde AK, van Kampen AHC. MetDFBA: incorporating time-resolved metabolomics measurements into dynamic flux balance analysis. Mol BioSyst. 2015; 11(1):137–45. es_ES
dc.description.references Barker M, Rayens W. Partial least squares for discrimination. J Chemom. 2003; 17(3):166–73. es_ES
dc.description.references Bartel J, Krumsiek J, Theis FJ. Statistical methods for the analysis of high-throughput metabolomics data. Comput Struct Biotechnol J. 2013; 4:201301009. es_ES
dc.description.references Hendrickx DM, Hoefsloot HCJ, Hendriks MMWB, Canelas AB, Smilde AK. Global test for metabolic pathway differences between conditions. Anal Chim Acta. 2012; 719:8–15. es_ES
dc.description.references Kanehisa M, Goto S, Hattori M, Aoki-Kinoshita KF, Itoh M, Kawashima S, Katayama T, Araki M, Hirakawa M. From genomics to chemical genomics: new developments in KEGG. Nucleic Acids Res. 2006; 34(Database issue):354–7. es_ES
dc.description.references Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000; 28(1):27–30. es_ES
dc.description.references Kanehisa M, Goto S, Furumichi M, Tanabe M, Hirakawa M. KEGG for representation and analysis of molecular networks involving diseases and drugs. Nucleic Acids Res. 2010; 38(Database issue):355–60. es_ES
dc.description.references Andersson CA, Bro R. The N-way Toolbox for MATLAB. Chemometr Intell Lab Syst. 2000; 52(1):1–4. es_ES
dc.description.references Terzer M, Stelling J. Large-scale computation of elementary flux modes with bit pattern trees. Bioinformatics. 2008; 24(19):2229–35. es_ES
dc.description.references Heerden JHv, Wortel MT, Bruggeman FJ, Heijnen JJ, Bollen YJM, Planqué R, Hulshof J, O’Toole TG, Wahl SA, Teusink B. Lost in Transition: Start-Up of Glycolysis Yields Subpopulations of Nongrowing Cells. Science. 2014; 343(6174):1245114. es_ES
dc.description.references Hoops S, Sahle S, Gauges R, Lee C, Pahle J, Simus N, Singhal M, Xu L, Mendes P, Kummer U. COPASI–a COmplex PAthway SImulator. Bioinformatics. 2006; 22(24):3067–74. es_ES
dc.description.references Petzold L. Automatic selection of methods for solving stiff and nonstiff systems of ordinary differential equations. SIAM J Sci Stat Comput. 1983; 4:136–48. es_ES
dc.description.references Canelas AB, van Gulik WM, Heijnen JJ. Determination of the cytosolic free NAD/NADH ratio in Saccharomyces cerevisiae under steady-state and highly dynamic conditions. Biotechnol Bioeng. 2008; 100(4):734–43. es_ES
dc.description.references Nikerel IE, Canelas AB, Jol SJ, Verheijen PJT, Heijnen JJ. Construction of kinetic models for metabolic reaction networks: Lessons learned in analysing short-term stimulus response data. Math Comput Model Dyn Syst. 2011; 17(3):243–60. es_ES
dc.description.references Llaneras F, Picó J. Stoichiometric modelling of cell metabolism. J Biosci Bioeng. 2008; 105(1):1–11. es_ES
dc.description.references Bro R. Multiway calibration. Multilinear PLS. J Chemom. 1998; 10(1):47–61. es_ES
dc.description.references Westerhuis JA, Hoefsloot HCJ, Smit S, Vis DJ, Smilde AK, Velzen EJJv, Duijnhoven JPMv, Dorsten FAv. Assessment of PLSDA cross validation. Metabolomics. 2008; 4(1):81–9. es_ES
dc.description.references Szymańska E, Saccenti E, Smilde AK, Westerhuis JA. Double-check: validation of diagnostic statistics for PLS-DA models in metabolomics studies. Metabolomics. 2012; 8(Suppl 1):3–16. es_ES
dc.description.references Rodrigues F, Ludovico P, Leão C. Sugar Metabolism in Yeasts: an Overview of Aerobic and Anaerobic Glucose Catabolism. In: Biodiversity and Ecophysiology of Yeasts. The Yeast Handbook. Berlin: Springer: 2006. p. 101–21. es_ES
dc.description.references Larsson K, Ansell R, Eriksson P, Adler L. A gene encoding sn-glycerol 3-phosphate dehydrogenase (NAD+) complements an osmosensitive mutant of Saccharomyces cerevisiae. Mol Microbiol. 1993; 10(5):1101–11. es_ES
dc.description.references Eriksson P, André L, Ansell R, Blomberg A, Adler L. Cloning and characterization of GPD2, a second gene encoding sn-glycerol 3-phosphate dehydrogenase (NAD+) in Saccharomyces cerevisiae, and its comparison with GPD1. Mol Microbiol. 1995; 17(1):95–107. es_ES
dc.description.references Norbeck J, Pâhlman AK, Akhtar N, Blomberg A, Adler L. Purification and characterization of two isoenzymes of DL-glycerol-3-phosphatase from Saccharomyces cerevisiae. Identification of the corresponding GPP1 and GPP2 genes and evidence for osmotic regulation of Gpp2p expression by the osmosensing mitogen-activated protein kinase signal transduction pathway. J Biol Chem. 1996; 271(23):13875–81. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem