Mostrar el registro sencillo del ítem
dc.contributor.author | Albert, A. | es_ES |
dc.contributor.author | Andre, M. | es_ES |
dc.contributor.author | Anghinolfi, M. | es_ES |
dc.contributor.author | Anton, G. | es_ES |
dc.contributor.author | Ardid Ramírez, Miguel | es_ES |
dc.contributor.author | Aubert, J.-J. | es_ES |
dc.contributor.author | Aublin, J. | es_ES |
dc.contributor.author | Avgitas, T. | es_ES |
dc.contributor.author | Baret, B. | es_ES |
dc.contributor.author | Barrios-Marti, J. | es_ES |
dc.contributor.author | Basa, S. | es_ES |
dc.contributor.author | Belhorma, B. | es_ES |
dc.contributor.author | Bertin, V. | es_ES |
dc.contributor.author | Biagi, S. | es_ES |
dc.contributor.author | Bormuth, R. | es_ES |
dc.contributor.author | Felis-Enguix, Iván | es_ES |
dc.contributor.author | Martínez Mora, Juan Antonio | es_ES |
dc.contributor.author | Saldaña-Coscollar, María | es_ES |
dc.date.accessioned | 2019-06-28T20:02:12Z | |
dc.date.available | 2019-06-28T20:02:12Z | |
dc.date.issued | 2018 | es_ES |
dc.identifier.issn | 1434-6044 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/122855 | |
dc.description.abstract | [EN] Cherenkov light induced by radioactive decay products is one of the major sources of background light for deep-sea neutrino telescopes such as ANTARES. These decays are at the same time a powerful calibration source. Using data collected by the ANTARES neutrino telescope from mid 2008 to 2017, the time evolution of the photon detection ef¿ciency of optical modules is studied. A modest loss of only 20% in 9 years is observed. The relative time calibration between adjacent modules is derived as well. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer-Verlag | es_ES |
dc.relation.ispartof | The European Physical Journal C | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Long term monitoring | es_ES |
dc.subject | Cherenkov light | es_ES |
dc.subject | 40K decays | es_ES |
dc.subject.classification | FISICA APLICADA | es_ES |
dc.title | Long-term monitoring of the ANTARES optical module efficiencies using K-40 decays in sea water | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1140/epjc/s10052-018-6132-2 | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada | es_ES |
dc.description.bibliographicCitation | Albert, A.; Andre, M.; Anghinolfi, M.; Anton, G.; Ardid Ramírez, M.; Aubert, J.; Aublin, J.... (2018). Long-term monitoring of the ANTARES optical module efficiencies using K-40 decays in sea water. The European Physical Journal C. 78(8):1-8. https://doi.org/10.1140/epjc/s10052-018-6132-2 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1140/epjc/s10052-018-6132-2 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 8 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 78 | es_ES |
dc.description.issue | 8 | es_ES |
dc.relation.pasarela | S\382503 | es_ES |
dc.description.references | M. Ageron et al., ANTARES: The first undersea neutrino telescope. Nuclear Instruments and Methods in Physics Research A 656, 11–38 (2011) | es_ES |
dc.description.references | A. Albert et al., First all-flavor neutrino pointlike source search with the ANTARES neutrino telescope. Physical Review D 96, 082001 (2017) | es_ES |
dc.description.references | A. Albert et al., All-flavor Search for a Diffuse Flux of Cosmic Neutrinos with Nine Years of ANTARES Data. The Astrophysical Journal Letters 853, L7 (2018) | es_ES |
dc.description.references | B.P. Abbott et al., Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophysical Journal Letters 848, L12 (2017) | es_ES |
dc.description.references | S. Adrián-Martínez et al., Measurement of atmospheric neutrino oscillations with the ANTARES neutrino telescope. Physics Letters B 714, 224–230 (2012) | es_ES |
dc.description.references | A. Albert et al., Search for relativistic magnetic monopoles with five years of the ANTARES detector data. Journal of High Energy Physics 7, 54 (2017) | es_ES |
dc.description.references | S. Adrián-Martínez et al., Limits on dark matter annihilation in the sun using the ANTARES neutrino telescope. Physics Letters B 759, 69–74 (2016) | es_ES |
dc.description.references | A. Albert et al., Results from the search for dark matter in the Milky Way with 9 years of data of the ANTARES neutrino telescope. Physics Letters B 769, 249–254 (2017) | es_ES |
dc.description.references | M.G. Aartsen et al., The IceCube Neutrino Observatory: instrumentation and online systems. Journal of Instrumentation 12, P03012 (2017) | es_ES |
dc.description.references | K. Abe et al., Calibration of the Super-Kamiokande detector. Nuclear Instruments and Methods in Physics Research A 737, 253–272 (2014) | es_ES |
dc.description.references | P. Amram et al., The ANTARES optical module. Nuclear Instruments and Methods in Physics Research A 484, 369–383 (2002) | es_ES |
dc.description.references | S. Adrián-Martínez et al., The positioning system of the ANTARES Neutrino Telescope. Journal of Instrumentation 7, T08002 (2012) | es_ES |
dc.description.references | J.A. Aguilar et al., Performance of the front-end electronics of the ANTARES neutrino telescope. Nuclear Instruments and Methods in Physics Research A 622, 59–73 (2010) | es_ES |
dc.description.references | J.A. Aguilar et al., The data acquisition system for the ANTARES neutrino telescope. Nuclear Instruments and Methods in Physics Research A 570, 107–116 (2007) | es_ES |
dc.description.references | J.A. Aguilar et al., Measurement of the atmospheric muon flux with a 4 GeV threshold in the ANTARES neutrino telescope. Astroparticle Physics 33, 86–90 (2010) | es_ES |
dc.description.references | J.A. Aguilar et al., Transmission of light in deep sea water at the site of the ANTARES neutrino telescope. Astroparticle Physics 23, 131–155 (2005) | es_ES |
dc.description.references | S. Kim et al., PubChem Substance and Compound databases. Nucleic Acids Research 44, 1202–13 (2016) | es_ES |
dc.description.references | G. Audi et al., The NUBASE evaluation of nuclear and decay properties. Nuclear Physics A 729, 3–128 (2003) | es_ES |
dc.description.references | J. Floor Anthoni. The chemical composition of seawater. http://www.seafriends.org.nz/oceano/seawater.htm | es_ES |
dc.description.references | J.R. De Laeter et al., Atomic Weights of the Elements: Review 2000 (IUPAC Technical Report). Pure Applied Chemistry 75, 683–800 (2003) | es_ES |
dc.description.references | P. Amram et al., Background light in potential sites for the ANTARES undersea neutrino telescope. Astroparticle Physics 13, 127–136 (2000) | es_ES |
dc.description.references | C. Tamburini et al., Deep-sea bioluminescence blooms after dense water formation at the ocean surface. PLOS ONE, 8(7), (2013) | es_ES |
dc.description.references | J.A. Aguilar et al., Time calibration of the ANTARES neutrino telescope. Astroparticle Physics 34, 539–549 (2011) | es_ES |
dc.description.references | M. Ageron et al., The ANTARES optical beacon system. Nuclear Instruments and Methods in Physics Research A 578, 498–509 (2007) | es_ES |
dc.description.references | S. Adrián-Martínez et al., Time calibration with atmospheric muon tracks in the ANTARES neutrino telescope. Astroparticle Physics 78, 43–51 (2016) | es_ES |
dc.description.references | S. Adrián-Martínez et al., Letter of Intent for KM3NeT 2.0. Journal of Physics G. Nuclear Physics 43(8), 084001 (2016) | es_ES |