Mostrar el registro sencillo del ítem
dc.contributor.author | Simarro, M. Angeles | es_ES |
dc.contributor.author | García Mollá, Víctor Manuel | es_ES |
dc.contributor.author | Vidal Maciá, Antonio Manuel | es_ES |
dc.contributor.author | Martínez Zaldívar, Francisco José | es_ES |
dc.contributor.author | Gonzalez, Alberto | es_ES |
dc.date.accessioned | 2019-06-30T20:01:33Z | |
dc.date.available | 2019-06-30T20:01:33Z | |
dc.date.issued | 2018 | es_ES |
dc.identifier.issn | 0165-1684 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/122916 | |
dc.description.abstract | [EN] Achieving optimal detection performance with low complexity is one of the major challenges, mainly in multiple-input multiple-output (MIMO) detection. This paper presents three low-complexity Soft-Output MIMO detection algorithms that are based mainly on Box Optimization (BO) techniques. The proposed methods provide good performance with low computational cost using continuous constrained optimization techniques. The rst proposed algorithm is a non-optimal Soft-Output detector of reduced complexity. This algorithm has been compared with the Soft-Output Fixed Complexity (SFSD) algorithm, obtaining lower complexity and similar performance. The two remaining algorithms are employed in a turbo receiver, achieving the max-log Maximum a Posteriori (MAP) performance. The two Soft-Input Soft-Output (SISO) algorithms were proposed in a previous work for soft-output MIMO detection. This work presents its extension for iterative decoding. The SISO algorithms presented are developed and compared with the SISO Single Tree Search algorithm (STS), in terms of efficiency and computational cost. The results show that the proposed algorithms are more efficient for high order constellation than the STS algorithm. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Signal Processing | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | MIMO | es_ES |
dc.subject | Soft-Input | es_ES |
dc.subject | Soft-Output | es_ES |
dc.subject | Detection | es_ES |
dc.subject | Box optimization | es_ES |
dc.subject.classification | INGENIERIA TELEMATICA | es_ES |
dc.subject.classification | TEORIA DE LA SEÑAL Y COMUNICACIONES | es_ES |
dc.subject.classification | CIENCIAS DE LA COMPUTACION E INTELIGENCIA ARTIFICIAL | es_ES |
dc.title | Soft MIMO detection through sphere decoding and box optimization | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.sigpro.2017.11.010 | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia | es_ES |
dc.description.bibliographicCitation | Simarro, MA.; García Mollá, VM.; Vidal Maciá, AM.; Martínez Zaldívar, FJ.; Gonzalez, A. (2018). Soft MIMO detection through sphere decoding and box optimization. Signal Processing. 145:48-58. https://doi.org/10.1016/j.sigpro.2017.11.010 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.sigpro.2017.11.010 | es_ES |
dc.description.upvformatpinicio | 48 | es_ES |
dc.description.upvformatpfin | 58 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 145 | es_ES |
dc.relation.pasarela | S\368494 | es_ES |