Mostrar el registro sencillo del ítem
dc.contributor.author | Valcarcel Germes, José Vicente | es_ES |
dc.contributor.author | Pérez De Castro, Ana María | es_ES |
dc.contributor.author | Díez Niclós, Mª José Teresa De Jesús | es_ES |
dc.contributor.author | Peiró Barber, Rosa Mª | es_ES |
dc.date.accessioned | 2019-06-30T20:02:47Z | |
dc.date.available | 2019-06-30T20:02:47Z | |
dc.date.issued | 2018 | es_ES |
dc.identifier.issn | 1695-971X | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/122924 | |
dc.description.abstract | [EN] The cucumber (Cucumis sativus L.) is an important crop worldwide. In the present study, the molecular genetic diversity of 131 Spanish accessions was analyzed using 23 simple sequence repeat (SSRs). Eighteen of these SSRs were polymorphic; the mean number of alleles, mean observed heterozygosity and mean polymorphic information content were 3.2, 0.065 and 0.229, respectively. Seven SSRs showed a polymorphic information content (PIC) ranging from 0.31 to 0.44, therefore they were reasonably informative. Around 60% of the alleles showed a frequency higher than 0.05, and only one allele in the SSR31399 showed a frequency lower than 0.01. In addition, three accession-specific alleles were found. A high proportion of variation among accessions was obtained. In no case all plants of any accession showed the same genotype and only 18 of 131 Spanish accessions had at least two plants with the same genotype. A cluster analysis did not show any relation with morphological types or geographical area. Therefore, these results demonstrated that molecular diversity of the cucumber did not reflect its phenotypic variability. Finally, this study provided information for the rationalization of the cucumber collection of the COMAV. Morphological traits, origin and molecular data were taken into account to select 47 accessions, six belonging to `French¿ type, 15 to `Long¿ type, and 24 to `Short¿ type. Phenotypic and molecular variability contained in the complete collection was conserved in the selected accessions | es_ES |
dc.description.sponsorship | Partially funded by the Generalitat Valenciana (project GV/2012/080). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria | es_ES |
dc.relation.ispartof | Spanish Journal of Agricultural Research | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Spanish cucumber landraces | es_ES |
dc.subject | Genebank rationalization | es_ES |
dc.subject | Simple sequence repeat | es_ES |
dc.subject.classification | GENETICA | es_ES |
dc.title | Molecular characterization of the cucumber (Cucumis sativus L.) accessions held at the COMAV s genebank | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.5424/sjar/2018161-12351 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//GV%2F2012%2F080/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UPV//PAID-06-10-2408/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia | es_ES |
dc.description.bibliographicCitation | Valcarcel Germes, JV.; Pérez De Castro, AM.; Díez Niclós, MJTDJ.; Peiró Barber, RM. (2018). Molecular characterization of the cucumber (Cucumis sativus L.) accessions held at the COMAV s genebank. Spanish Journal of Agricultural Research. 16(1):1-11. https://doi.org/10.5424/sjar/2018161-12351 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.5424/sjar/2018161-12351 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 11 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 16 | es_ES |
dc.description.issue | 1 | es_ES |
dc.relation.pasarela | S\362508 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.description.references | Areshchenkova, T., & Ganal, M. W. (1999). Long tomato microsatellites are predominantly associated with centromeric regions. Genome, 42(3), 536-544. doi:10.1139/g98-155 | es_ES |
dc.description.references | Baker, R. H., Yu, X., & DeSalle, R. (1998). Assessing the Relative Contribution of Molecular and Morphological Characters in Simultaneous Analysis Trees. Molecular Phylogenetics and Evolution, 9(3), 427-436. doi:10.1006/mpev.1998.0519 | es_ES |
dc.description.references | Botstein D, White RL, Skolnick M, Davis RW, 1980. Construction of genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 32: 314-331. | es_ES |
dc.description.references | Cavagnaro, P. F., Senalik, D. A., Yang, L., Simon, P. W., Harkins, T. T., Kodira, C. D., … Weng, Y. (2010). Genome-wide characterization of simple sequence repeats in cucumber (Cucumis sativus L.). BMC Genomics, 11(1), 569. doi:10.1186/1471-2164-11-569 | es_ES |
dc.description.references | Chen, S., Chen, W., Shen, X., Yang, Y., Qi, F., Liu, Y., & Meng, H. (2014). Analysis of the genetic diversity of garlic (Allium sativum L.) by simple sequence repeat and inter simple sequence repeat analysis and agro-morphological traits. Biochemical Systematics and Ecology, 55, 260-267. doi:10.1016/j.bse.2014.03.021 | es_ES |
dc.description.references | Collard, B. C. Y., Jahufer, M. Z. Z., Brouwer, J. B., & Pang, E. C. K. (2005). An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: The basic concepts. Euphytica, 142(1-2), 169-196. doi:10.1007/s10681-005-1681-5 | es_ES |
dc.description.references | Dijkhuizen A, Kennard WC, Havey MJ, Staub JE, 1996. RFLP variation and genetic relationships in cultivated cucumber. Euphytica 90: 79-87. | es_ES |
dc.description.references | Doyle JJ, Doyle JL, 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19: 11-15. | es_ES |
dc.description.references | Elameen, A., Larsen, A., Klemsdal, S. S., Fjellheim, S., Sundheim, L., Msolla, S., … Rognli, O. A. (2010). Phenotypic diversity of plant morphological and root descriptor traits within a sweet potato, Ipomoea batatas (L.) Lam., germplasm collection from Tanzania. Genetic Resources and Crop Evolution, 58(3), 397-407. doi:10.1007/s10722-010-9585-1 | es_ES |
dc.description.references | Fehet T, 1992. Watermelon. In: Genetic improvement of vegetable crops; Kaloo G, Bergh BO (eds.). pp: 295-314. Pergamon Press, NY. | es_ES |
dc.description.references | Geleta, N., Labuschagne, M. T., & Viljoen, C. D. (2006). Genetic diversity analysis in sorghum germplasm as estimated by AFLP, SSR and morpho-agronomical markers. Biodiversity and Conservation, 15(10), 3251-3265. doi:10.1007/s10531-005-0313-7 | es_ES |
dc.description.references | Horejsi, T., & Staub, J. E. (1999). Genetic Resources and Crop Evolution, 46(4), 337-350. doi:10.1023/a:1008650509966 | es_ES |
dc.description.references | Hu, J., Zhou, X., & Li, J. (2010). Development of novel EST-SSR markers for cucumber (Cucumis sativus) and their transferability to related species. Scientia Horticulturae, 125(3), 534-538. doi:10.1016/j.scienta.2010.03.021 | es_ES |
dc.description.references | Hu J, Liang F, Liu L, Si S, 2010b. Genetic relationship of a cucumber germplasm collection revealed by newly developed EST-SSR markers. J Genet 89: 28-32. | es_ES |
dc.description.references | Hu, J., Wang, L., & Li, J. (2011). Comparison of genomic SSR and EST-SSR markers for estimating genetic diversity in cucumber. Biologia Plantarum, 55(3), 577-580. doi:10.1007/s10535-011-0129-0 | es_ES |
dc.description.references | Huang, S., Li, R., Zhang, Z., Li, L., Gu, X., Fan, W., … Ni, P. (2009). The genome of the cucumber, Cucumis sativus L. Nature Genetics, 41(12), 1275-1281. doi:10.1038/ng.475 | es_ES |
dc.description.references | Knerr, L. D., Staub, J. E., Holder, D. J., & May, B. P. (1989). Genetic diversity in Cucumis sativus L. assessed by variation at 18 allozyme coding loci. Theoretical and Applied Genetics, 78(1), 119-128. doi:10.1007/bf00299764 | es_ES |
dc.description.references | KONG, Q., XIANG, C., & YU, Z. (2006). Development of EST-SSRs in Cucumis sativus from sequence database. Molecular Ecology Notes, 6(4), 1234-1236. doi:10.1111/j.1471-8286.2006.01500.x | es_ES |
dc.description.references | Li X, Zhu D, Du Y, Shen D, Kong Q, Song J, 2004. Studies on genetic diversity and phylogenetic relationship of cucumber (Cucumis sativus L.) germplasm by AFLP technique. Acta Hortic Sin 34: 309-314. | es_ES |
dc.description.references | Liu, J., Qu, J., Hu, K., Zhang, L., Li, J., Wu, B., … Cui, X. (2015). Development of genomewide simple sequence repeat fingerprints and highly polymorphic markers in cucumbers based on next-generation sequence data. Plant Breeding, 134(5), 605-611. doi:10.1111/pbr.12304 | es_ES |
dc.description.references | Liu, K., & Muse, S. V. (2005). PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics, 21(9), 2128-2129. doi:10.1093/bioinformatics/bti282 | es_ES |
dc.description.references | Lv, J., Qi, J., Shi, Q., Shen, D., Zhang, S., Shao, G., … Huang, S. (2012). Genetic Diversity and Population Structure of Cucumber (Cucumis sativus L.). PLoS ONE, 7(10), e46919. doi:10.1371/journal.pone.0046919 | es_ES |
dc.description.references | McCreight JD, Nerson H, Grumet R, 1992. Melon. In: Genetic improvement of vegetable crops; Kaloo G, Bergh BO (eds.). pp. 267-294. Pergamon Press, NY. | es_ES |
dc.description.references | Meglic, V., Serquen, F., & Staub, J. E. (1996). Genetic diversity in cucumber (Cucumis sativus L.): I. A reevaluation of the U.S. germplasm collection. Genetic Resources and Crop Evolution, 43(6), 533-546. doi:10.1007/bf00138830 | es_ES |
dc.description.references | Mliki, A. (2003). Genetic Resources and Crop Evolution, 50(5), 461-468. doi:10.1023/a:1023957813397 | es_ES |
dc.description.references | Mu S, Gu X, Zhang S, Wang X, Wang Y, 2008. Genetic diversity of cucumber (Cucumis sativus L.) germplasm by SSR. Acta Hortic Sin 35: 1323-1330. | es_ES |
dc.description.references | Nei M, 1978. Estimation of average heterozygosity and genetic distance from small number of individuals. Genetics 89: 583-590. | es_ES |
dc.description.references | Odong, T. L., Jansen, J., van Eeuwijk, F. A., & van Hintum, T. J. L. (2012). Quality of core collections for effective utilisation of genetic resources review, discussion and interpretation. Theoretical and Applied Genetics, 126(2), 289-305. doi:10.1007/s00122-012-1971-y | es_ES |
dc.description.references | Page RDM, 1996. Treeview: An application to display phylogenetic trees on personal computers. Comput Appl Biosci 12: 357-358. | es_ES |
dc.description.references | Panaud, O., Chen, X., & McCouch, S. R. (1996). Development of microsatellite markers and characterization of simple sequence length polymorphism (SSLP) in rice (Oryza sativa L.). MGG Molecular & General Genetics, 252(5), 597-607. doi:10.1007/bf02172406 | es_ES |
dc.description.references | Pandey, S., Ansari, W. A., Mishra, V. K., Singh, A. K., & Singh, M. (2013). Genetic diversity in Indian cucumber based on microsatellite and morphological markers. Biochemical Systematics and Ecology, 51, 19-27. doi:10.1016/j.bse.2013.08.002 | es_ES |
dc.description.references | Parra-Quijano, M., Iriondo, J. M., Torres, E., & Rosa, L. D. la. (2011). Evaluation and Validation of Ecogeographical Core Collections using Phenotypic Data. Crop Science, 51(2), 694. doi:10.2135/cropsci2010.05.0273 | es_ES |
dc.description.references | Peakall, R., & Smouse, P. E. (2012). GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research--an update. Bioinformatics, 28(19), 2537-2539. doi:10.1093/bioinformatics/bts460 | es_ES |
dc.description.references | POWELL, W., MACHRAY, G., & PROVAN, J. (1996). Polymorphism revealed by simple sequence repeats. Trends in Plant Science, 1(7), 215-222. doi:10.1016/s1360-1385(96)86898-0 | es_ES |
dc.description.references | Qi, J., Liu, X., Shen, D., Miao, H., Xie, B., Li, X., … Huang, S. (2013). A genomic variation map provides insights into the genetic basis of cucumber domestication and diversity. Nature Genetics, 45(12), 1510-1515. doi:10.1038/ng.2801 | es_ES |
dc.description.references | Raghami, M., López-Sesé, A. I., Hasandokht, M. R., Zamani, Z., Moghadam, M. R. F., & Kashi, A. (2013). Genetic diversity among melon accessions from Iran and their relationships with melon germplasm of diverse origins using microsatellite markers. Plant Systematics and Evolution, 300(1), 139-151. doi:10.1007/s00606-013-0866-y | es_ES |
dc.description.references | Reche J, 2011. Cultivo del pepino en invernadero. Ministerio de Medio Ambiente, Medio Rural y Marino, Gobierno de Espa-a. | es_ES |
dc.description.references | Ren, Y., Zhang, Z., Liu, J., Staub, J. E., Han, Y., Cheng, Z., … Huang, S. (2009). An Integrated Genetic and Cytogenetic Map of the Cucumber Genome. PLoS ONE, 4(6), e5795. doi:10.1371/journal.pone.0005795 | es_ES |
dc.description.references | Roldán-Ruiz, I., van Euwijk, F. A., Gilliland, T. J., Dubreuil, P., Dillmann, C., Lallemand, J., … Baril, C. P. (2001). A comparative study of molecular and morphological methods of describing relationships between perennial ryegrass (Lolium perenne L.) varieties. Theoretical and Applied Genetics, 103(8), 1138-1150. doi:10.1007/s001220100571 | es_ES |
dc.description.references | Rubinstein, M., Katzenellenbogen, M., Eshed, R., Rozen, A., Katzir, N., Colle, M., … Ophir, R. (2015). Ultrahigh-Density Linkage Map for Cultivated Cucumber (Cucumis sativus L.) Using a Single-Nucleotide Polymorphism Genotyping Array. PLOS ONE, 10(4), e0124101. doi:10.1371/journal.pone.0124101 | es_ES |
dc.description.references | Staub, J. E., Serquen, F. C., & Mccreight, J. D. (1997). Genetic Resources and Crop Evolution, 44(4), 315-326. doi:10.1023/a:1008639103328 | es_ES |
dc.description.references | Staub, J. E., Box, J., Meglic, V., Horejsi, T. F., & McCreight, J. D. (1997). Genetic Resources and Crop Evolution, 44(3), 257-269. doi:10.1023/a:1008639616331 | es_ES |
dc.description.references | Staub, J. E., Serquen, F. C., Horejsi, T., & Chen, J. (1999). Genetic Resources and Crop Evolution, 46(3), 297-310. doi:10.1023/a:1008663225896 | es_ES |
dc.description.references | Struss, D., & Plieske, J. (1998). The use of microsatellite markers for detection of genetic diversity in barley populations. Theoretical and Applied Genetics, 97(1-2), 308-315. doi:10.1007/s001220050900 | es_ES |
dc.description.references | Sun, X., Xie, Y., Bi, Y., Liu, J., Amombo, E., Hu, T., & Fu, J. (2015). Comparative study of diversity based on heat tolerant-related morpho-physiological traits and molecular markers in tall fescue accessions. Scientific Reports, 5(1). doi:10.1038/srep18213 | es_ES |
dc.description.references | Szewc-McFadden, A. K., Kresovich, S., Bliek, S. M., Mitchell, S. E., & McFerson, J. R. (1996). Identification of polymorphic, conserved simple sequence repeats (SSRs) in cultivated Brassica species. Theoretical and Applied Genetics, 93(4), 534-538. doi:10.1007/bf00417944 | es_ES |
dc.description.references | Tatlioglu TP, 1992. Cucumber. In: Genetic improvement of vegetable crops; Kaloo G, Bergh BO (eds.). pp: 197-234. Pergamon Press, NY. | es_ES |
dc.description.references | Thomas, M. R., & Scott, N. S. (1993). Microsatellite repeats in grapevine reveal DNA polymorphisms when analysed as sequence-tagged sites (STSs). Theoretical and Applied Genetics, 86(8), 985-990. doi:10.1007/bf00211051 | es_ES |
dc.description.references | Valcárcel, J. V., Peiró, R. M., Pérez-de-Castro, A., & Díez, M. J. (2018). Morphological characterization of the cucumber (Cucumis sativus L.) collection of the COMAV’s Genebank. Genetic Resources and Crop Evolution, 65(4), 1293-1306. doi:10.1007/s10722-018-0614-9 | es_ES |
dc.description.references | van Hintum TJL, Brown AH, Spillane C, Hodgkin T, 2000. Core collections of plant genetic resources, IPGRI technical bulletin no. 3. IPGRI, Rome, Italy. 51 pp. | es_ES |
dc.description.references | Van Treuren, R., de Groot, E. C., Boukema, I. W., van de Wiel, C. C. M., & van Hintum, T. J. L. (2010). Marker-assisted reduction of redundancy in a genebank collection of cultivated lettuce. Plant Genetic Resources, 8(2), 95-105. doi:10.1017/s1479262109990220 | es_ES |
dc.description.references | Watcharawongpaiboon N, Chunwongse J, 2008. Development and characterization of microsatellite markers from an enriched genomic library of cucumber (Cucumis sativus). Plant Breed 127: 74-81. | es_ES |
dc.description.references | Wóycicki, R., Witkowicz, J., Gawroński, P., Dąbrowska, J., Lomsadze, A., Pawełkowicz, M., … Przybecki, Z. (2011). The Genome Sequence of the North-European Cucumber (Cucumis sativus L.) Unravels Evolutionary Adaptation Mechanisms in Plants. PLoS ONE, 6(7), e22728. doi:10.1371/journal.pone.0022728 | es_ES |
dc.description.references | Yang, L., Koo, D.-H., Li, Y., Zhang, X., Luan, F., Havey, M. J., … Weng, Y. (2012). Chromosome rearrangements during domestication of cucumber as revealed by high-density genetic mapping and draft genome assembly. The Plant Journal, 71(6), 895-906. doi:10.1111/j.1365-313x.2012.05017.x | es_ES |
dc.description.references | Yang, Y. T., Liu, Y., Qi, F., Xu, L. L., Li, X. Z., Cong, L. J., … Fang, Y. L. (2015). Assessment of genetic diversity of cucumber cultivars in China based on simple sequence repeats and fruit traits. Genetics and Molecular Research, 14(4), 19028-19039. doi:10.4238/2015.december.29.10 | es_ES |
dc.description.references | Zhou, Q., Miao, H., Li, S., Zhang, S., Wang, Y., Weng, Y., … Gu, X. (2015). A Sequencing-Based Linkage Map of Cucumber. Molecular Plant, 8(6), 961-963. doi:10.1016/j.molp.2015.03.008 | es_ES |
dc.description.references | Zhu, H., Song, P., Koo, D.-H., Guo, L., Li, Y., Sun, S., … Yang, L. (2016). Genome wide characterization of simple sequence repeats in watermelon genome and their application in comparative mapping and genetic diversity analysis. BMC Genomics, 17(1). doi:10.1186/s12864-016-2870-4 | es_ES |