- -

Molecular characterization of the cucumber (Cucumis sativus L.) accessions held at the COMAV s genebank

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Molecular characterization of the cucumber (Cucumis sativus L.) accessions held at the COMAV s genebank

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Valcarcel Germes, José Vicente es_ES
dc.contributor.author Pérez De Castro, Ana María es_ES
dc.contributor.author Díez Niclós, Mª José Teresa De Jesús es_ES
dc.contributor.author Peiró Barber, Rosa Mª es_ES
dc.date.accessioned 2019-06-30T20:02:47Z
dc.date.available 2019-06-30T20:02:47Z
dc.date.issued 2018 es_ES
dc.identifier.issn 1695-971X es_ES
dc.identifier.uri http://hdl.handle.net/10251/122924
dc.description.abstract [EN] The cucumber (Cucumis sativus L.) is an important crop worldwide. In the present study, the molecular genetic diversity of 131 Spanish accessions was analyzed using 23 simple sequence repeat (SSRs). Eighteen of these SSRs were polymorphic; the mean number of alleles, mean observed heterozygosity and mean polymorphic information content were 3.2, 0.065 and 0.229, respectively. Seven SSRs showed a polymorphic information content (PIC) ranging from 0.31 to 0.44, therefore they were reasonably informative. Around 60% of the alleles showed a frequency higher than 0.05, and only one allele in the SSR31399 showed a frequency lower than 0.01. In addition, three accession-specific alleles were found. A high proportion of variation among accessions was obtained. In no case all plants of any accession showed the same genotype and only 18 of 131 Spanish accessions had at least two plants with the same genotype. A cluster analysis did not show any relation with morphological types or geographical area. Therefore, these results demonstrated that molecular diversity of the cucumber did not reflect its phenotypic variability. Finally, this study provided information for the rationalization of the cucumber collection of the COMAV. Morphological traits, origin and molecular data were taken into account to select 47 accessions, six belonging to `French¿ type, 15 to `Long¿ type, and 24 to `Short¿ type. Phenotypic and molecular variability contained in the complete collection was conserved in the selected accessions es_ES
dc.description.sponsorship Partially funded by the Generalitat Valenciana (project GV/2012/080). es_ES
dc.language Inglés es_ES
dc.publisher Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria es_ES
dc.relation.ispartof Spanish Journal of Agricultural Research es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Spanish cucumber landraces es_ES
dc.subject Genebank rationalization es_ES
dc.subject Simple sequence repeat es_ES
dc.subject.classification GENETICA es_ES
dc.title Molecular characterization of the cucumber (Cucumis sativus L.) accessions held at the COMAV s genebank es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.5424/sjar/2018161-12351 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//GV%2F2012%2F080/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//PAID-06-10-2408/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia es_ES
dc.description.bibliographicCitation Valcarcel Germes, JV.; Pérez De Castro, AM.; Díez Niclós, MJTDJ.; Peiró Barber, RM. (2018). Molecular characterization of the cucumber (Cucumis sativus L.) accessions held at the COMAV s genebank. Spanish Journal of Agricultural Research. 16(1):1-11. https://doi.org/10.5424/sjar/2018161-12351 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.5424/sjar/2018161-12351 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 11 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 16 es_ES
dc.description.issue 1 es_ES
dc.relation.pasarela S\362508 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.description.references Areshchenkova, T., & Ganal, M. W. (1999). Long tomato microsatellites are predominantly associated with centromeric regions. Genome, 42(3), 536-544. doi:10.1139/g98-155 es_ES
dc.description.references Baker, R. H., Yu, X., & DeSalle, R. (1998). Assessing the Relative Contribution of Molecular and Morphological Characters in Simultaneous Analysis Trees. Molecular Phylogenetics and Evolution, 9(3), 427-436. doi:10.1006/mpev.1998.0519 es_ES
dc.description.references Botstein D, White RL, Skolnick M, Davis RW, 1980. Construction of genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 32: 314-331. es_ES
dc.description.references Cavagnaro, P. F., Senalik, D. A., Yang, L., Simon, P. W., Harkins, T. T., Kodira, C. D., … Weng, Y. (2010). Genome-wide characterization of simple sequence repeats in cucumber (Cucumis sativus L.). BMC Genomics, 11(1), 569. doi:10.1186/1471-2164-11-569 es_ES
dc.description.references Chen, S., Chen, W., Shen, X., Yang, Y., Qi, F., Liu, Y., & Meng, H. (2014). Analysis of the genetic diversity of garlic (Allium sativum L.) by simple sequence repeat and inter simple sequence repeat analysis and agro-morphological traits. Biochemical Systematics and Ecology, 55, 260-267. doi:10.1016/j.bse.2014.03.021 es_ES
dc.description.references Collard, B. C. Y., Jahufer, M. Z. Z., Brouwer, J. B., & Pang, E. C. K. (2005). An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: The basic concepts. Euphytica, 142(1-2), 169-196. doi:10.1007/s10681-005-1681-5 es_ES
dc.description.references Dijkhuizen A, Kennard WC, Havey MJ, Staub JE, 1996. RFLP variation and genetic relationships in cultivated cucumber. Euphytica 90: 79-87. es_ES
dc.description.references Doyle JJ, Doyle JL, 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19: 11-15. es_ES
dc.description.references Elameen, A., Larsen, A., Klemsdal, S. S., Fjellheim, S., Sundheim, L., Msolla, S., … Rognli, O. A. (2010). Phenotypic diversity of plant morphological and root descriptor traits within a sweet potato, Ipomoea batatas (L.) Lam., germplasm collection from Tanzania. Genetic Resources and Crop Evolution, 58(3), 397-407. doi:10.1007/s10722-010-9585-1 es_ES
dc.description.references Fehet T, 1992. Watermelon. In: Genetic improvement of vegetable crops; Kaloo G, Bergh BO (eds.). pp: 295-314. Pergamon Press, NY. es_ES
dc.description.references Geleta, N., Labuschagne, M. T., & Viljoen, C. D. (2006). Genetic diversity analysis in sorghum germplasm as estimated by AFLP, SSR and morpho-agronomical markers. Biodiversity and Conservation, 15(10), 3251-3265. doi:10.1007/s10531-005-0313-7 es_ES
dc.description.references Horejsi, T., & Staub, J. E. (1999). Genetic Resources and Crop Evolution, 46(4), 337-350. doi:10.1023/a:1008650509966 es_ES
dc.description.references Hu, J., Zhou, X., & Li, J. (2010). Development of novel EST-SSR markers for cucumber (Cucumis sativus) and their transferability to related species. Scientia Horticulturae, 125(3), 534-538. doi:10.1016/j.scienta.2010.03.021 es_ES
dc.description.references Hu J, Liang F, Liu L, Si S, 2010b. Genetic relationship of a cucumber germplasm collection revealed by newly developed EST-SSR markers. J Genet 89: 28-32. es_ES
dc.description.references Hu, J., Wang, L., & Li, J. (2011). Comparison of genomic SSR and EST-SSR markers for estimating genetic diversity in cucumber. Biologia Plantarum, 55(3), 577-580. doi:10.1007/s10535-011-0129-0 es_ES
dc.description.references Huang, S., Li, R., Zhang, Z., Li, L., Gu, X., Fan, W., … Ni, P. (2009). The genome of the cucumber, Cucumis sativus L. Nature Genetics, 41(12), 1275-1281. doi:10.1038/ng.475 es_ES
dc.description.references Knerr, L. D., Staub, J. E., Holder, D. J., & May, B. P. (1989). Genetic diversity in Cucumis sativus L. assessed by variation at 18 allozyme coding loci. Theoretical and Applied Genetics, 78(1), 119-128. doi:10.1007/bf00299764 es_ES
dc.description.references KONG, Q., XIANG, C., & YU, Z. (2006). Development of EST-SSRs in Cucumis sativus from sequence database. Molecular Ecology Notes, 6(4), 1234-1236. doi:10.1111/j.1471-8286.2006.01500.x es_ES
dc.description.references Li X, Zhu D, Du Y, Shen D, Kong Q, Song J, 2004. Studies on genetic diversity and phylogenetic relationship of cucumber (Cucumis sativus L.) germplasm by AFLP technique. Acta Hortic Sin 34: 309-314. es_ES
dc.description.references Liu, J., Qu, J., Hu, K., Zhang, L., Li, J., Wu, B., … Cui, X. (2015). Development of genomewide simple sequence repeat fingerprints and highly polymorphic markers in cucumbers based on next-generation sequence data. Plant Breeding, 134(5), 605-611. doi:10.1111/pbr.12304 es_ES
dc.description.references Liu, K., & Muse, S. V. (2005). PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics, 21(9), 2128-2129. doi:10.1093/bioinformatics/bti282 es_ES
dc.description.references Lv, J., Qi, J., Shi, Q., Shen, D., Zhang, S., Shao, G., … Huang, S. (2012). Genetic Diversity and Population Structure of Cucumber (Cucumis sativus L.). PLoS ONE, 7(10), e46919. doi:10.1371/journal.pone.0046919 es_ES
dc.description.references McCreight JD, Nerson H, Grumet R, 1992. Melon. In: Genetic improvement of vegetable crops; Kaloo G, Bergh BO (eds.). pp. 267-294. Pergamon Press, NY. es_ES
dc.description.references Meglic, V., Serquen, F., & Staub, J. E. (1996). Genetic diversity in cucumber (Cucumis sativus L.): I. A reevaluation of the U.S. germplasm collection. Genetic Resources and Crop Evolution, 43(6), 533-546. doi:10.1007/bf00138830 es_ES
dc.description.references Mliki, A. (2003). Genetic Resources and Crop Evolution, 50(5), 461-468. doi:10.1023/a:1023957813397 es_ES
dc.description.references Mu S, Gu X, Zhang S, Wang X, Wang Y, 2008. Genetic diversity of cucumber (Cucumis sativus L.) germplasm by SSR. Acta Hortic Sin 35: 1323-1330. es_ES
dc.description.references Nei M, 1978. Estimation of average heterozygosity and genetic distance from small number of individuals. Genetics 89: 583-590. es_ES
dc.description.references Odong, T. L., Jansen, J., van Eeuwijk, F. A., & van Hintum, T. J. L. (2012). Quality of core collections for effective utilisation of genetic resources review, discussion and interpretation. Theoretical and Applied Genetics, 126(2), 289-305. doi:10.1007/s00122-012-1971-y es_ES
dc.description.references Page RDM, 1996. Treeview: An application to display phylogenetic trees on personal computers. Comput Appl Biosci 12: 357-358. es_ES
dc.description.references Panaud, O., Chen, X., & McCouch, S. R. (1996). Development of microsatellite markers and characterization of simple sequence length polymorphism (SSLP) in rice (Oryza sativa L.). MGG Molecular & General Genetics, 252(5), 597-607. doi:10.1007/bf02172406 es_ES
dc.description.references Pandey, S., Ansari, W. A., Mishra, V. K., Singh, A. K., & Singh, M. (2013). Genetic diversity in Indian cucumber based on microsatellite and morphological markers. Biochemical Systematics and Ecology, 51, 19-27. doi:10.1016/j.bse.2013.08.002 es_ES
dc.description.references Parra-Quijano, M., Iriondo, J. M., Torres, E., & Rosa, L. D. la. (2011). Evaluation and Validation of Ecogeographical Core Collections using Phenotypic Data. Crop Science, 51(2), 694. doi:10.2135/cropsci2010.05.0273 es_ES
dc.description.references Peakall, R., & Smouse, P. E. (2012). GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research--an update. Bioinformatics, 28(19), 2537-2539. doi:10.1093/bioinformatics/bts460 es_ES
dc.description.references POWELL, W., MACHRAY, G., & PROVAN, J. (1996). Polymorphism revealed by simple sequence repeats. Trends in Plant Science, 1(7), 215-222. doi:10.1016/s1360-1385(96)86898-0 es_ES
dc.description.references Qi, J., Liu, X., Shen, D., Miao, H., Xie, B., Li, X., … Huang, S. (2013). A genomic variation map provides insights into the genetic basis of cucumber domestication and diversity. Nature Genetics, 45(12), 1510-1515. doi:10.1038/ng.2801 es_ES
dc.description.references Raghami, M., López-Sesé, A. I., Hasandokht, M. R., Zamani, Z., Moghadam, M. R. F., & Kashi, A. (2013). Genetic diversity among melon accessions from Iran and their relationships with melon germplasm of diverse origins using microsatellite markers. Plant Systematics and Evolution, 300(1), 139-151. doi:10.1007/s00606-013-0866-y es_ES
dc.description.references Reche J, 2011. Cultivo del pepino en invernadero. Ministerio de Medio Ambiente, Medio Rural y Marino, Gobierno de Espa-a. es_ES
dc.description.references Ren, Y., Zhang, Z., Liu, J., Staub, J. E., Han, Y., Cheng, Z., … Huang, S. (2009). An Integrated Genetic and Cytogenetic Map of the Cucumber Genome. PLoS ONE, 4(6), e5795. doi:10.1371/journal.pone.0005795 es_ES
dc.description.references Roldán-Ruiz, I., van Euwijk, F. A., Gilliland, T. J., Dubreuil, P., Dillmann, C., Lallemand, J., … Baril, C. P. (2001). A comparative study of molecular and morphological methods of describing relationships between perennial ryegrass (Lolium perenne L.) varieties. Theoretical and Applied Genetics, 103(8), 1138-1150. doi:10.1007/s001220100571 es_ES
dc.description.references Rubinstein, M., Katzenellenbogen, M., Eshed, R., Rozen, A., Katzir, N., Colle, M., … Ophir, R. (2015). Ultrahigh-Density Linkage Map for Cultivated Cucumber (Cucumis sativus L.) Using a Single-Nucleotide Polymorphism Genotyping Array. PLOS ONE, 10(4), e0124101. doi:10.1371/journal.pone.0124101 es_ES
dc.description.references Staub, J. E., Serquen, F. C., & Mccreight, J. D. (1997). Genetic Resources and Crop Evolution, 44(4), 315-326. doi:10.1023/a:1008639103328 es_ES
dc.description.references Staub, J. E., Box, J., Meglic, V., Horejsi, T. F., & McCreight, J. D. (1997). Genetic Resources and Crop Evolution, 44(3), 257-269. doi:10.1023/a:1008639616331 es_ES
dc.description.references Staub, J. E., Serquen, F. C., Horejsi, T., & Chen, J. (1999). Genetic Resources and Crop Evolution, 46(3), 297-310. doi:10.1023/a:1008663225896 es_ES
dc.description.references Struss, D., & Plieske, J. (1998). The use of microsatellite markers for detection of genetic diversity in barley populations. Theoretical and Applied Genetics, 97(1-2), 308-315. doi:10.1007/s001220050900 es_ES
dc.description.references Sun, X., Xie, Y., Bi, Y., Liu, J., Amombo, E., Hu, T., & Fu, J. (2015). Comparative study of diversity based on heat tolerant-related morpho-physiological traits and molecular markers in tall fescue accessions. Scientific Reports, 5(1). doi:10.1038/srep18213 es_ES
dc.description.references Szewc-McFadden, A. K., Kresovich, S., Bliek, S. M., Mitchell, S. E., & McFerson, J. R. (1996). Identification of polymorphic, conserved simple sequence repeats (SSRs) in cultivated Brassica species. Theoretical and Applied Genetics, 93(4), 534-538. doi:10.1007/bf00417944 es_ES
dc.description.references Tatlioglu TP, 1992. Cucumber. In: Genetic improvement of vegetable crops; Kaloo G, Bergh BO (eds.). pp: 197-234. Pergamon Press, NY. es_ES
dc.description.references Thomas, M. R., & Scott, N. S. (1993). Microsatellite repeats in grapevine reveal DNA polymorphisms when analysed as sequence-tagged sites (STSs). Theoretical and Applied Genetics, 86(8), 985-990. doi:10.1007/bf00211051 es_ES
dc.description.references Valcárcel, J. V., Peiró, R. M., Pérez-de-Castro, A., & Díez, M. J. (2018). Morphological characterization of the cucumber (Cucumis sativus L.) collection of the COMAV’s Genebank. Genetic Resources and Crop Evolution, 65(4), 1293-1306. doi:10.1007/s10722-018-0614-9 es_ES
dc.description.references van Hintum TJL, Brown AH, Spillane C, Hodgkin T, 2000. Core collections of plant genetic resources, IPGRI technical bulletin no. 3. IPGRI, Rome, Italy. 51 pp. es_ES
dc.description.references Van Treuren, R., de Groot, E. C., Boukema, I. W., van de Wiel, C. C. M., & van Hintum, T. J. L. (2010). Marker-assisted reduction of redundancy in a genebank collection of cultivated lettuce. Plant Genetic Resources, 8(2), 95-105. doi:10.1017/s1479262109990220 es_ES
dc.description.references Watcharawongpaiboon N, Chunwongse J, 2008. Development and characterization of microsatellite markers from an enriched genomic library of cucumber (Cucumis sativus). Plant Breed 127: 74-81. es_ES
dc.description.references Wóycicki, R., Witkowicz, J., Gawroński, P., Dąbrowska, J., Lomsadze, A., Pawełkowicz, M., … Przybecki, Z. (2011). The Genome Sequence of the North-European Cucumber (Cucumis sativus L.) Unravels Evolutionary Adaptation Mechanisms in Plants. PLoS ONE, 6(7), e22728. doi:10.1371/journal.pone.0022728 es_ES
dc.description.references Yang, L., Koo, D.-H., Li, Y., Zhang, X., Luan, F., Havey, M. J., … Weng, Y. (2012). Chromosome rearrangements during domestication of cucumber as revealed by high-density genetic mapping and draft genome assembly. The Plant Journal, 71(6), 895-906. doi:10.1111/j.1365-313x.2012.05017.x es_ES
dc.description.references Yang, Y. T., Liu, Y., Qi, F., Xu, L. L., Li, X. Z., Cong, L. J., … Fang, Y. L. (2015). Assessment of genetic diversity of cucumber cultivars in China based on simple sequence repeats and fruit traits. Genetics and Molecular Research, 14(4), 19028-19039. doi:10.4238/2015.december.29.10 es_ES
dc.description.references Zhou, Q., Miao, H., Li, S., Zhang, S., Wang, Y., Weng, Y., … Gu, X. (2015). A Sequencing-Based Linkage Map of Cucumber. Molecular Plant, 8(6), 961-963. doi:10.1016/j.molp.2015.03.008 es_ES
dc.description.references Zhu, H., Song, P., Koo, D.-H., Guo, L., Li, Y., Sun, S., … Yang, L. (2016). Genome wide characterization of simple sequence repeats in watermelon genome and their application in comparative mapping and genetic diversity analysis. BMC Genomics, 17(1). doi:10.1186/s12864-016-2870-4 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem