- -

Feature extraction and similarity of movement detection during sleep, based on higher order spectra and entropy of the actigraphy signal: Results of the Hispanic Community Health Study/Study of Latinos

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Feature extraction and similarity of movement detection during sleep, based on higher order spectra and entropy of the actigraphy signal: Results of the Hispanic Community Health Study/Study of Latinos

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Iglesias-Martinez, Miguel Enrique es_ES
dc.contributor.author Garcia-Gomez, Juan M es_ES
dc.contributor.author Sáez Silvestre, Carlos es_ES
dc.contributor.author Fernández de Córdoba, Pedro es_ES
dc.contributor.author Conejero, J. Alberto es_ES
dc.date.accessioned 2019-06-30T20:03:20Z
dc.date.available 2019-06-30T20:03:20Z
dc.date.issued 2018 es_ES
dc.identifier.uri http://hdl.handle.net/10251/122927
dc.description.abstract [EN] The aim of this work was to develop a new unsupervised exploratory method of characterizing feature extraction and detecting similarity of movement during sleep through actigraphy signals. We here propose some algorithms, based on signal bispectrum and bispectral entropy, to determine the unique features of independent actigraphy signals. Experiments were carried out on 20 randomly chosen actigraphy samples of the Hispanic Community Health Study/Study of Latinos (HCHS/SOL) database, with no information other than their aperiodicity. The Pearson correlation coefficient matrix and the histogram correlation matrix were computed to study the similarity of movements during sleep. The results obtained allowed us to explore the connections between certain sleep actigraphy patterns and certain pathologies. es_ES
dc.description.sponsorship Funding for this study was provided by the authors' departments. J.A.C. acknowledges support from the Ministerio de Economia, Industria y Competitividad, Grant MTM2016-75963-P. J.M.G.-G. y C.S. Ministerio de Ciencia Tecnologia y Telecomunicaciones, Grant DPI2016-80054-R. J.A.C., J.M.G.-G. and C.S. acknowledge support from the European Commission, CrowdHealth project (H2020-SC1-2016-CNECT No. 727560). es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Sensors es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Actigraphy es_ES
dc.subject Bispectrum es_ES
dc.subject Entropy es_ES
dc.subject Feature extraction es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title Feature extraction and similarity of movement detection during sleep, based on higher order spectra and entropy of the actigraphy signal: Results of the Hispanic Community Health Study/Study of Latinos es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/s18124310 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/727560/EU/Collective wisdom driving public health policies/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MTM2016-75963-P/ES/DINAMICA DE OPERADORES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//DPI2016-80054-R/ES/BIOMARCADORES DINAMICOS BASADOS EN FIRMAS TISULARES MULTIPARAMETRICAS PARA EL SEGUIMIENTO Y EVALUACION DE LA RESPUESTA A TRATAMIENTO DE PACIENTES CON GLIOBLASTOMA Y CANCER DE/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Iglesias-Martinez, ME.; Garcia-Gomez, JM.; Sáez Silvestre, C.; Fernández De Córdoba, P.; Conejero, JA. (2018). Feature extraction and similarity of movement detection during sleep, based on higher order spectra and entropy of the actigraphy signal: Results of the Hispanic Community Health Study/Study of Latinos. Sensors. 18(12):4310-1-4310-17. https://doi.org/10.3390/s18124310 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/s18124310 es_ES
dc.description.upvformatpinicio 4310-1 es_ES
dc.description.upvformatpfin 4310-17 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 18 es_ES
dc.description.issue 12 es_ES
dc.identifier.eissn 1424-8220 es_ES
dc.identifier.pmid 30563277 en_EN
dc.identifier.pmcid PMC6308588 en_EN
dc.relation.pasarela S\373596 es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem