- -

Serverless computing for container-based architectures

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Serverless computing for container-based architectures

Show simple item record

Files in this item

dc.contributor.author Pérez-González, Alfonso María es_ES
dc.contributor.author Moltó, Germán es_ES
dc.contributor.author Caballer Fernández, Miguel es_ES
dc.contributor.author Calatrava Arroyo, Amanda es_ES
dc.date.accessioned 2019-07-03T20:03:14Z
dc.date.available 2019-07-03T20:03:14Z
dc.date.issued 2018 es_ES
dc.identifier.issn 0167-739X es_ES
dc.identifier.uri http://hdl.handle.net/10251/123147
dc.description.abstract [EN] New architectural patterns (e.g. microservices), the massive adoption of Linux contain- ers (e.g. Docker containers), and improvements in key features of Cloud computing such as auto-scaling, have helped developers to decouple complex and monolithic sys- tems into smaller stateless services. In turn, Cloud providers have introduced serverless computing, where applications can be defined as a workflow of event-triggered functions. However, serverless services, such as AWS Lambda, impose serious restrictions for these applications (e.g. using a predefined set of programming languages or difficulting the installation and deployment of external libraries). This paper addresses such issues by introducing a framework and a methodology to create Serverless Container-aware AR- chitectures (SCAR). The SCAR framework can be used to create highly-parallel event- driven serverless applications that run on customized runtime environments defined as Docker images on top of AWS Lambda. This paper describes the architecture of SCAR together with the cache-based optimizations applied to minimize cost, exemplified on a massive image processing use case. The results show that, by means of SCAR, AWS Lambda becomes a convenient platform for High Throughput Computing, specially for highly-parallel bursty workloads of short stateless jobs. es_ES
dc.description.sponsorship The authors would like to thank the Spanish "Ministerio de Economia, Industria y Competitividad" for the project "BigCLOE" under grant reference TIN2016-79951-R. The authors would also like to thank Jorge Gomes from LIP for the development of the udocker tool. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation AEI/TIN2016-79951-R es_ES
dc.relation.ispartof Future Generation Computer Systems es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Cloud Computing es_ES
dc.subject Serverless es_ES
dc.subject Docker es_ES
dc.subject Elasticity es_ES
dc.subject AWS Lambda es_ES
dc.subject.classification LENGUAJES Y SISTEMAS INFORMATICOS es_ES
dc.subject.classification CIENCIAS DE LA COMPUTACION E INTELIGENCIA ARTIFICIAL es_ES
dc.title Serverless computing for container-based architectures es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.future.2018.01.022 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Instrumentación para Imagen Molecular - Institut d'Instrumentació per a Imatge Molecular es_ES
dc.description.bibliographicCitation Pérez-González, AM.; Moltó, G.; Caballer Fernández, M.; Calatrava Arroyo, A. (2018). Serverless computing for container-based architectures. Future Generation Computer Systems. 83:50-59. https://doi.org/10.1016/j.future.2018.01.022 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.org/10.1016/j.future.2018.01.022 es_ES
dc.description.upvformatpinicio 50 es_ES
dc.description.upvformatpfin 59 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 83 es_ES
dc.relation.pasarela S\351748 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES


This item appears in the following Collection(s)

Show simple item record