Mostrar el registro sencillo del ítem
dc.contributor.author | Pérez-González, Alfonso María | es_ES |
dc.contributor.author | Moltó, Germán | es_ES |
dc.contributor.author | Caballer Fernández, Miguel | es_ES |
dc.contributor.author | Calatrava Arroyo, Amanda | es_ES |
dc.date.accessioned | 2019-07-03T20:03:14Z | |
dc.date.available | 2019-07-03T20:03:14Z | |
dc.date.issued | 2018 | es_ES |
dc.identifier.issn | 0167-739X | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/123147 | |
dc.description.abstract | [EN] New architectural patterns (e.g. microservices), the massive adoption of Linux contain- ers (e.g. Docker containers), and improvements in key features of Cloud computing such as auto-scaling, have helped developers to decouple complex and monolithic sys- tems into smaller stateless services. In turn, Cloud providers have introduced serverless computing, where applications can be defined as a workflow of event-triggered functions. However, serverless services, such as AWS Lambda, impose serious restrictions for these applications (e.g. using a predefined set of programming languages or difficulting the installation and deployment of external libraries). This paper addresses such issues by introducing a framework and a methodology to create Serverless Container-aware AR- chitectures (SCAR). The SCAR framework can be used to create highly-parallel event- driven serverless applications that run on customized runtime environments defined as Docker images on top of AWS Lambda. This paper describes the architecture of SCAR together with the cache-based optimizations applied to minimize cost, exemplified on a massive image processing use case. The results show that, by means of SCAR, AWS Lambda becomes a convenient platform for High Throughput Computing, specially for highly-parallel bursty workloads of short stateless jobs. | es_ES |
dc.description.sponsorship | The authors would like to thank the Spanish "Ministerio de Economia, Industria y Competitividad" for the project "BigCLOE" under grant reference TIN2016-79951-R. The authors would also like to thank Jorge Gomes from LIP for the development of the udocker tool. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Future Generation Computer Systems | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Cloud Computing | es_ES |
dc.subject | Serverless | es_ES |
dc.subject | Docker | es_ES |
dc.subject | Elasticity | es_ES |
dc.subject | AWS Lambda | es_ES |
dc.subject.classification | LENGUAJES Y SISTEMAS INFORMATICOS | es_ES |
dc.subject.classification | CIENCIAS DE LA COMPUTACION E INTELIGENCIA ARTIFICIAL | es_ES |
dc.title | Serverless computing for container-based architectures | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.future.2018.01.022 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//TIN2016-79951-R/ES/COMPUTACION BIG DATA Y DE ALTAS PRESTACIONES SOBRE MULTI-CLOUDS ELASTICOS/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto de Instrumentación para Imagen Molecular - Institut d'Instrumentació per a Imatge Molecular | es_ES |
dc.description.bibliographicCitation | Pérez-González, AM.; Moltó, G.; Caballer Fernández, M.; Calatrava Arroyo, A. (2018). Serverless computing for container-based architectures. Future Generation Computer Systems. 83:50-59. https://doi.org/10.1016/j.future.2018.01.022 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://doi.org/10.1016/j.future.2018.01.022 | es_ES |
dc.description.upvformatpinicio | 50 | es_ES |
dc.description.upvformatpfin | 59 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 83 | es_ES |
dc.relation.pasarela | S\351748 | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |