- -

Five genomic regions have a major impact on fat composition in Iberian pigs

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Five genomic regions have a major impact on fat composition in Iberian pigs

Mostrar el registro completo del ítem

Pena, RN.; Noguera, JL.; Garcia-Santana, MJ.; Gonzalez, E.; Tejeda, JF.; Ros-Freixedes, R.; Ibáñez-Escriche, N. (2019). Five genomic regions have a major impact on fat composition in Iberian pigs. Scientific Reports. 9:1-9. https://doi.org/10.1038/s41598-019-38622-7

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/123193

Ficheros en el ítem

Metadatos del ítem

Título: Five genomic regions have a major impact on fat composition in Iberian pigs
Autor: Pena, R. N. Noguera, J. L. Garcia-Santana, M. J. Gonzalez, E. Tejeda, J. F. Ros-Freixedes, R. Ibáñez-Escriche, N.
Entidad UPV: Universitat Politècnica de València. Departamento de Ciencia Animal - Departament de Ciència Animal
Fecha difusión:
Resumen:
[EN] The adipogenic nature of the Iberian pig defines many quality attributes of its fresh meat and dry-cured products. The distinct varieties of Iberian pig exhibit great variability in the genetic parameters for fat ...[+]
Derechos de uso: Reconocimiento (by)
Fuente:
Scientific Reports. (issn: 2045-2322 )
DOI: 10.1038/s41598-019-38622-7
Editorial:
Nature Publishing Group
Versión del editor: https://doi.org/10.1038/s41598-019-38622-7
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//RTA2012-00054-C02-01/ES/Utilización de información genómica masiva para mejorar la calidad de los productos de cerdo ibérico en una población de referencia mixta y el estudio de su interacción con la alimentación./
Agradecimientos:
The authors would like to acknowledge the help of Inga Food S.A. and their support staff in setting up the experiment (E. Magallon, M. Ramos, L. Munoz, and P. Diaz) and Dr L. Varona from University of Zaragoza for discussion. ...[+]
Tipo: Artículo

References

Garcia Casco, J. M., Munoz Munoz, M., SilioLopez, L. & Rodriguez Valdovinos, C. Genotype by environment interaction for carcass traits and intramuscular fat content in heavy Iberian pigs fattened in two different free-range systems. Span J Agric Res 12, 388–395, https://doi.org/10.5424/sjar/2014122-4840 (2014).

Lopez-Bote, C. J. Sustained utilization of the Iberian pig breed. Meat Sci 49, S17–S27 (1998).

Benito, J., Albarran, A. & Garcia Casco, J. M. In Sustainable grassland productivity: Proceedings of the 21st General Meeting of the European Grassland Federation, Badajoz, Spain, 3–6April, 2006 (eds Lloveras, J. et al.) 635-645 (Sociedad Espanola para el Estudio de los Pastos(SEEP), 2006). [+]
Garcia Casco, J. M., Munoz Munoz, M., SilioLopez, L. & Rodriguez Valdovinos, C. Genotype by environment interaction for carcass traits and intramuscular fat content in heavy Iberian pigs fattened in two different free-range systems. Span J Agric Res 12, 388–395, https://doi.org/10.5424/sjar/2014122-4840 (2014).

Lopez-Bote, C. J. Sustained utilization of the Iberian pig breed. Meat Sci 49, S17–S27 (1998).

Benito, J., Albarran, A. & Garcia Casco, J. M. In Sustainable grassland productivity: Proceedings of the 21st General Meeting of the European Grassland Federation, Badajoz, Spain, 3–6April, 2006 (eds Lloveras, J. et al.) 635-645 (Sociedad Espanola para el Estudio de los Pastos(SEEP), 2006).

Benito, M. J., Rodriguez, M. M., Cordoba, M. G., Aranda, E. & Cordoba, J. J. Rapid differentiation of Staphylococcus aureus from staphylococcal species by arbitrarily primed-polymerase chain reaction. Let Appl Microbiol 31, 368–373, https://doi.org/10.1046/j.1472-765x.2000.00833.x (2000).

Groenen, M. A. A decade of pig genome sequencing: a window on pig domestication and evolution. Genet Sel Evol 48, 23, https://doi.org/10.1186/s12711-016-0204-2 (2016).

Ibanez-Escriche, N., Magallon, E., Gonzalez, E., Tejeda, J. F. & Noguera, J. L. Genetic parameters and crossbreeding effects of fat deposition and fatty acid profiles in Iberian pig lines. J Anim Sci 94, 28–37, https://doi.org/10.2527/jas.2015-9433 (2016).

Price, A. L. et al. Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet 38, 904–909, https://doi.org/10.1038/ng1847 (2006).

Dai, K., Khatun, I. & Hussain, M. M. NR2F1 and IRE1beta suppress microsomal triglyceride transfer protein expression and lipoprotein assembly in undifferentiated intestinal epithelial cells. Arterioscler Thromb Vasc Biol 30, 568–574, https://doi.org/10.1161/ATVBAHA.109.198135 (2010).

Wang, B. et al. Nutrigenomic regulation of adipose tissue development - role of retinoic acid: A review. Meat Sci 120, 100–106, https://doi.org/10.1016/j.meatsci.2016.04.003 (2016).

Arimochi, H., Sasaki, Y., Kitamura, A. & Yasutomo, K. Differentiation of preadipocytes and mature adipocytes requires PSMB8. Sci Rep 6, 26791, https://doi.org/10.1038/srep26791 (2016).

Kitamura, A. et al. A mutation in the immunoproteasome subunit PSMB8 causes autoinflammation and lipodystrophy in humans. J Clin Invest 121, 4150–4160, https://doi.org/10.1172/JCI58414 (2011).

Bandyopadhyay, G. K. et al. Catestatin (chromogranin A(352–372)) and novel effects on mobilization of fat from adipose tissue through regulation of adrenergic and leptin signaling. J Biol Chem 287, 23141–23151, https://doi.org/10.1074/jbc.M111.335877 (2012).

Gallardo, D. et al. Polymorphism of the pig acetyl-coenzyme A carboxylase alpha gene is associated with fatty acid composition in a Duroc commercial line. Anim Genet 40, 410–417, https://doi.org/10.1111/j.1365-2052.2009.01854.x (2009).

Muñoz, G. et al. QTL detection on porcine chromosome 12 for fatty-acid composition and association analyses of the fatty acid synthase, gastric inhibitory polypeptide and acetyl-coenzyme A carboxylase alpha genes. Anim Genet 38, 639–646, https://doi.org/10.1111/j.1365-2052.2007.01668.x (2007).

Munoz, M. et al. Disentangling Two QTL on Porcine Chromosome 12 for Backfat Fatty Acid Composition. Anim Biotechnol 24, 168–186, https://doi.org/10.1080/10495398.2012.763130 (2013).

Webb, E. C. & O’Neill, H. A. The animal fat paradox and meat quality. Meat Sci 80, 28–36, https://doi.org/10.1016/j.meatsci.2008.05.029 (2008).

Hamza, M. S. et al. De-novo identification of PPARgamma/RXR binding sites and direct targets during adipogenesis. PLoS One 4, e4907, https://doi.org/10.1371/journal.pone.0004907 (2009).

Singh Ahuja, H. et al. Differential effects of rexinoids and thiazolidinediones on metabolic gene expression in diabetic rodents. Mol Pharmacol 59, 765–773 (2001).

Estany, J., Ros-Freixedes, R., Tor, M. & Pena, R. N. A functional variant in the stearoyl-CoA desaturase gene promoter enhances fatty acid desaturation in pork. PLoS ONE 9, e86177, https://doi.org/10.1371/journal.pone.0086177 (2014).

Ros-Freixedes, R., Reixach, J., Bosch, L., Tor, M. & Estany, J. Genetic correlations of intramuscular fat content and fatty acid composition among muscles and with subcutaneous fat in Duroc pigs. J Anim Sci 92, 5417–5425, https://doi.org/10.2527/jas.2014-8202 (2014).

Zappaterra, M. et al. Investigation of the Perilipin 5 gene expression and association study of its sequence polymorphism with meat and carcass quality traits in different pig breeds. Animal 12, 1135–1143, https://doi.org/10.1017/S1751731117002804 (2018).

O’Fallon, J. V., Busboom, J. R., Nelson, M. L. & Gaskins, C. T. A direct method for fatty acid methyl ester synthesis: application to wet meat tissues, oils, and feedstuffs. J Anim Sci 85, 1511–1521, https://doi.org/10.2527/jas.2006-491 (2007).

Ros-Freixedes, R. et al. Genome-Wide Association Study Singles Out SCD and LEPR as the Two Main Loci Influencing Intramuscular Fat Content and Fatty Acid Composition in Duroc Pigs. PLoS One 11, e0152496, https://doi.org/10.1371/journal.pone.0152496 (2016).

Chomczynski, P. & Sacchi, N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162, 156–159, https://doi.org/10.1006/abio.1987.9999 (1987).

Meuwissen, T. H., Hayes, B. J. & Goddard, M. E. Prediction of total genetic value using genome-wide dense marker maps. Genetics 157, 1819–1829 (2001).

Fernando, R. L. & Garrick, D. J. GenSel: User Manual for a Portfolio ofGenomic Selection Related Analyses. (ed. Iowa State University Animal Breeding and Genetics, Ames.) (2009).

Habier, D., Fernando, R. L. & Dekkers, J. C. M. The Impact of Genetic Relationship Information on Genome-Assisted Breeding Values. Genetics 177, 2389–2397 (2007).

Tossi, R., Fernando, R. L. & Dekkers, J. C. M. Genome-wide mapping of quantitative trait loci in admixed populations using mixed linear model and Bayesian multiple regression analysis. Genetics Selection Evolution 50, 32 (2018).

Legarra, A. et al. A comparison of methods for whole-genome QTL mapping using dense markers in four livestock species. Genet Sel Evol 47, 6, https://doi.org/10.1186/s12711-015-0087-7 (2015).

Kass, R. E. & Raftery, A. E. Bayes Factors. Journal of the American Statistical Association 90, 773–795 (1995).

Kuleshov, M. V. et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res 44, W90–97, https://doi.org/10.1093/nar/gkw377 (2016).

Huang da, W., Sherman, B. T. & Lempicki, R. A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nature Protocols 4, 44–57, https://doi.org/10.1038/nprot.2008.211 (2009).

Untergasser, A. et al. Primer3Plus, an enhanced web interface to Primer3. Nucleic Acids Res 35, W71–74, https://doi.org/10.1093/nar/gkm306 (2007).

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem