- -

Mortality forecasting in Colombia from abridged life tables by sex

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Mortality forecasting in Colombia from abridged life tables by sex

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Diaz-Rojo, Gisou es_ES
dc.contributor.author Debón Aucejo, Ana María es_ES
dc.contributor.author Giner-Bosch, Vicent es_ES
dc.date.accessioned 2019-07-04T20:01:21Z
dc.date.available 2019-07-04T20:01:21Z
dc.date.issued 2018 es_ES
dc.identifier.uri http://hdl.handle.net/10251/123198
dc.description.abstract [EN] BACKGROUND: An adequate forecasting model of mortality that allows an analysis of different population changes is a topic of interest for countries in demographic transition. Phenomena such as the reduction of mortality, ageing, and the increase in life expectancy are extremely useful in the planning of public policies that seek to promote the economic and social development of countries. To our knowledge, this paper is one of the first to evaluate the performance of mortality forecasting models applied to abridged life tables. OBJECTIVE: Select a mortality model that best describes and forecasts the characteristics of mortality in Colombia when only abridged life tables are available. DATA AND METHOD: We used Colombian abridged life tables for the period 1973-2005 with data from the Latin American Human Mortality Database. Different mortality models to deal with modeling and forecasting probability of death are presented in this study. For the comparison of mortality models, two criteria were analyzed: graphical residuals analysis and the hold-out method to evaluate the predictive performance of the models, applying different goodness of fit measures. RESULTS: Only three models did not have convergence problems: Lee-Carter (LC), Lee-Carter with two terms (LC2), and Age-Period-Cohort (APC) models. All models fit better for women, the improvement of LC2 on LC is mostly for central ages for men, and the APC model's fit is worse than the other two. The analysis of the standardized deviance residuals allows us to deduce that the models that reasonably fit the Colombian mortality data are LC and LC2. The major residuals correspond to children's ages and later ages for both sexes. CONCLUSION: The LC and LC2 models present better goodness of fit, identifying the principal characteristics of mortality for Colombia.Mortality forecasting from abridged life tables by sex has clear added value for studying differences between developing countries and convergence/divergence of demographic changes. es_ES
dc.description.sponsorship Support for the research presented in this paper was provided by a grant from the Ministerio de Economía y Competitividad of Spain, project no. MTM2013-45381-P.
dc.language Inglés es_ES
dc.publisher Springer es_ES
dc.relation.ispartof Genus. Journal of Population Sciences (Online) es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Mortality estimation es_ES
dc.subject Lee-Carter model es_ES
dc.subject Mortality forecasting es_ES
dc.subject Life expectancy es_ES
dc.subject.classification ESTADISTICA E INVESTIGACION OPERATIVA es_ES
dc.title Mortality forecasting in Colombia from abridged life tables by sex es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1186/s41118-018-0038-6 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MTM2013-45381-P/ES/DIFERENCIAS DE LONGEVIDAD EN LA UNION EUROPEA: APLICACION DE NUEVOS METODOS PARA SU EVALUACION Y ANALISIS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat es_ES
dc.description.bibliographicCitation Diaz-Rojo, G.; Debón Aucejo, AM.; Giner-Bosch, V. (2018). Mortality forecasting in Colombia from abridged life tables by sex. Genus. Journal of Population Sciences (Online). 74(15):1-23. https://doi.org/10.1186/s41118-018-0038-6 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1186/s41118-018-0038-6 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 23 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 74 es_ES
dc.description.issue 15 es_ES
dc.identifier.eissn 2035-5556 es_ES
dc.identifier.pmid 30363762
dc.identifier.pmcid PMC6182348
dc.relation.pasarela S\382061 es_ES
dc.contributor.funder Ministerio de Economía y Empresa es_ES
dc.description.references Aburto, J.M., & García-Guerrero, V.M. (2015). El modelo aditivo doble multiplicativo. Una aplicacion a la mortalidad mexicaná. Papeles de Población, 21(84), 9–44. es_ES
dc.description.references Acosta, K., & Romero, J. (2014). Cambios recientes en las principales causas de mortalidad en Colombia. Technical report: Banco de la Banco de la República- Serie Documentos de Trabajo Sobre Economía Regional. es_ES
dc.description.references Aguilar, E. (2013). Estimación y proyección de la mortalidad para Costa Rica con la aplicación del método Lee-Carter con dos variantes. Población y, Salud en Mesoamérica, 11(1), 3–24. es_ES
dc.description.references Andreozzi, L (2012). Estimación y pronósticos de la mortalidad de Argentina utilizando el modelo de Lee-Carter. Revista de la Sociedad Argentina de Estadística, 10(1), 21–43. es_ES
dc.description.references Andreozzi, L, & Blaconá, MT (2011). Estimación y pronóstico de las tasas de mortalidad y la esperanza de vida en la República Argentina. In Proceedings of Anales de las Decimosextas Jornadas Investigaciones en la Facultad de Ciencias Económicas y Estadística. Universidad Nacional de Rosario, Argentina. es_ES
dc.description.references Andres, V, Millossovich, P, Vladimir, K (2018). StMoMo: Stochastic Mortality Modeling in R. Journal of Statistical Software, 84(3), 1–38. es_ES
dc.description.references Belliard, M., & Williams, I. (2013). Proyección estocástica de la mortalidad. Una aplicación de Lee-Carter en la Argentina. Revista Latinoamericana de Población, 7(13), 129–148. es_ES
dc.description.references Bertranou, E. (2008). Tendencias demográficas y protección social en América Latina y el Caribe: CEPAL. http://repositorio.cepal.org/handle/11362/7224 . Accessed 8 Aug 2017. es_ES
dc.description.references Blaconá, M.T, & Andreozzi, L. (2014). Análisis de la mortalidad por edad y sexo mediante modelos para datos funcionales. Estadística, 66(186–187), 65–89. es_ES
dc.description.references Blum, A., Kalai, A., Langford, J. (1999). Beating the hold-out: bounds for k-fold and progressive cross-validation. In Proceedings of the twelfth annual Conference on Computational Learning Theory. ACM, (pp. 203–208). es_ES
dc.description.references Booth, H., Maindonald, J., Smith, L. (2002). Applying Lee-Carter under conditions of variable mortality decline. Population Studies, 56(3), 325–336. es_ES
dc.description.references Booth, H., & Tickle, L. (2008). Mortality modelling and forecasting: a review of methods. Annals of Actuarial Science, 3(1–2), 3–43. es_ES
dc.description.references Butt, Z., Haberman, S., Shang, H.L. (2014). ilc: Lee-Carter mortality models using iterative fitting algorithms. http://cran.r-project.org/package=ilc . es_ES
dc.description.references Cairns, A.J., Blake, D., Dowd, K. (2006). A two-factor model for stochastic mortality with parameter uncertainty: theory and calibration. Journal of Risk and Insurance, 73(4), 687–718. es_ES
dc.description.references Cairns, A.J., Blake, D., Dowd, K., Coughlan, G.D., Epstein, D., Khalaf-Allah, M. (2011). Mortality density forecasts: an analysis of six stochastic mortality models. Insurance: Mathematics and Economics, 48(3), 355–367. es_ES
dc.description.references Cairns, A.J., Blake, D., Dowd, K., Coughlan, G.D., Epstein, D., Ong, A., Balevich, I. (2009). A quantitative comparison of stochastic mortality models using data from England and Wales and the United States. North American Actuarial Journal, 13(1), 1–35. es_ES
dc.description.references Canudas-Romo, V. (2008). The modal age at death and the shifting mortality hypothesis. Demographic Research, 19(30), 1179–1204. es_ES
dc.description.references Carfora, M.F., Cutillo, L., Orlando, A. (2017). A quantitative comparison of stochastic mortality models on Italian population data. Computational Statistics & Data Analysis, 112, 198–214. es_ES
dc.description.references Currie, I.D., Durban, M., Eilers, P.H.C. (2006). Generalized linear array models with applications to multidimensional smoothing. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 68(2), 259–280. es_ES
dc.description.references Debón, A., Martínez-Ruiz, F., Montes, F. (2012). Temporal evolution of mortality indicators: application to Spanish data. North American Actuarial Journal, 16(3), 364–377. es_ES
dc.description.references Debón, A., Montes, F., Puig, F. (2008). Modelling and forecasting mortality in Spain. European Journal of Operation Research, 189(3), 624–637. es_ES
dc.description.references Debón, A., Martínez-Ruiz, F., Montes, F. (2010). A geostatistical approach for dynamic life tables: the effect of mortality on remaining lifetime and annuities. Insurance: Mathematics and Economics, 47(3), 327–336. es_ES
dc.description.references Díaz, G., & Debón, A. (2016). Tendencias y comportamiento de la mortalidad en Colombia entre 1973 y 2005. Estadística Española, 58(191), 277–300. es_ES
dc.description.references García-Guerrero, V.M., & Mellado, M.O. (2012). Proyección estocástica de la mortalidad mexicana por medio del método de Lee-Carter. Estudios Demográficos y Urbanos, 27(2), 409–448. es_ES
dc.description.references Garfield, R., & Llanten, C. (2004). The public health context of violence in Colombia. Revista Panamericana de Salud Pública, 16(4), 266–271. es_ES
dc.description.references Haberman, S. (2011). A comparative study of parametric mortality projection models. Insurance: Mathematics and Economics, 48(1), 35–55. es_ES
dc.description.references Holford, T.R. (2006). Approaches to fitting age-period-cohort models with unequal intervals. Statistics in Medicine, 25(6), 977–993. es_ES
dc.description.references Hunt, A., & Villegas, A.M. (2015). Robustness and convergence in the Lee-Carter model with cohort effects. Insurance: Mathematics and Economics, 64, 186–202. es_ES
dc.description.references Hyndman, R.J. (2016). Forecast: forecasting functions for time series and linear models. R package version 7.3. https://CRAN.R-project.org/package=forecast . es_ES
dc.description.references Hyndman, R.J, Booth, H., Tickle, L., Maindonald, J. (2014). Demography: forecasting mortality, fertility, migration and population data. R package version 1.18. https://CRAN.R-project.org/package=demography . es_ES
dc.description.references Hyndman, R.J., & Ullah, M.S (2007). Robust forecasting of mortality and fertility rates: a functional data approach. Computational Statistics & Data Analysis, 51(10), 4942–4956. es_ES
dc.description.references Kennes, T. (2017). The convergence and robustness of cohort extensions of mortality models. MaRBLe, 1, 36–53. es_ES
dc.description.references Lee, R., & Carter, L. (1992). Modelling and forecasting U.S. mortality. Journal of the American Statistical Association, 87, 659–671. es_ES
dc.description.references Lee, R., & Rofman, R. (1994). Modelación y proyección de la mortalidad en Chile. Notas de Poblacion, 6(59), 183–213. es_ES
dc.description.references Lee, W. (1997). Characterizing exposure-disease association in human populations using the Lorenz curve and Gini index. Statistics in Medicine, 16(7), 729–739. es_ES
dc.description.references Levitt, S., & Rubio, M. (2000). Understanding crime in Colombia and what can be done about it. Technical Report 20, FEDESARROLLO. es_ES
dc.description.references Llorca, J., Prieto, M.D., Alvarez, C.F., Delgado-Rodriguez, M. (1998). Age differential mortality in Spain, 1900–1991. Journal of Epidemiology & Community Health, 52, 259–261. es_ES
dc.description.references Llorca, J, Prieto, M.D, Delgado-Rodriguez, M (2000). Medición de las desigualdades en la edad de muerte: cálculo del índice de Gini a partir de las tablas de mortalidad. Revista Española de Salud Pública, 74(1), 5–12. es_ES
dc.description.references Lora, E. (2008). Técnicas de medición económica. Metodología y aplicaciones en Colombia, Ed. Siglo Veintiuno XXI y Fedesarrollo, fourth edition. Bogotá D.C.: Alfaomega Colombiana S.A. es_ES
dc.description.references Ochoa, C.A. (2015). El modelo Lee-Carter para estimar y pronosticar mortalidad: una aplicación para Colombia. Master’s thesis: Universidad Nacional de Colombia-Sede Medellín. es_ES
dc.description.references O’hare, C., & Li, Y. (2017). Modelling mortality: are we heading in the right direction?Applied Economics, 49(2), 170–187. es_ES
dc.description.references Ornelas, A. (2015). La mortalidad y la longevidad en la cuantificación del riesgo actuarial para la población de México. PhD thesis: Universitat de Barcelona. es_ES
dc.description.references Remund, A., Camarda, C.G., Riffe, T., et al. (2017). A cause-of-death decomposition of the young adult mortality hump. Technical report. Rostock, Germany: Max Planck Institute for Demographic Research. es_ES
dc.description.references Renshaw, A.E., & Haberman, S. (2003). Lee-Carter mortality forecasting with age-specific enhancement. Insurance: Mathematics and Economics, 33(2), 255–272. es_ES
dc.description.references Renshaw, A.E., & Haberman, S. (2006). A cohort-based extensionto the Lee-Carter model for mortality reduction factors. Insurance: Mathematic and Economics, 38(3), 556–570. es_ES
dc.description.references Reyes, A.R. (2010). Una aproximación al costo fiscal en pensiones como consecuencia del envejecimiento de la población en Colombia y el efecto de la sobre-mortalidad masculina. Master’s thesis: Universidad Nacional de Colombia. es_ES
dc.description.references Richards, S. (2008). Detecting year-of-birth mortality patterns with limited data. Journal of the Royal Statistical Society: Series A (Statistics in Society), 171(1), 279–298. es_ES
dc.description.references Rodríguez, J. (2007). Desigualdades socioeconómicas entre departamentos y su asociación con indicadores de mortalidad en Colombia en 2000. Rev Panam Salud Publica, 21(2/3), 111–124. es_ES
dc.description.references Shkolnikov, V.M., Andreev, E.M., Begun, A. (2003). Gini coefficient as a life table function: computation from discrete data, decomposition of differences and empirical examples. Demographic Research, 8, 305–358. es_ES
dc.description.references Singh, A., Shukla, A., Ram, F., Kumar, K. (2017). Trends in inequality in length of life in India: a decomposition analysis by age and causes of death. Genus, 73(1), 5. es_ES
dc.description.references Tabeau, E. (2001). A review of demographic forecasting models for mortality. In: Tabeau, E., van den Berg Jeths A., Heathcote C. (Eds.) In Forecasting Mortality in Developed Countries. European Studies of Population, vol 9. Springer, Dordrecht, (pp. 1–32). es_ES
dc.description.references Turner, H., & Firth, D. (2015). gnm: Generalized nonlinear models in R. R package version 1.0-8. https://CRAN.R-project.org/package=gnm . es_ES
dc.description.references Urdinola, B.P., & Queiroz, B.L. (2017). Latin American Human Mortality Database. http://www.lamortalidad.org . Accessed 21 Nov 2015. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem