Mostrar el registro sencillo del ítem
dc.contributor.author | Esteve Garcia, Albert![]() |
es_ES |
dc.contributor.author | Ros Bardisa, Alberto![]() |
es_ES |
dc.contributor.author | Robles Martínez, Antonio![]() |
es_ES |
dc.contributor.author | Gómez Requena, María Engracia![]() |
es_ES |
dc.date.accessioned | 2019-07-07T20:02:26Z | |
dc.date.available | 2019-07-07T20:02:26Z | |
dc.date.issued | 2018 | es_ES |
dc.identifier.issn | 1045-9219 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/123281 | |
dc.description.abstract | [EN] Discerning the private or shared condition of the data accessed by the applications is an increasingly decisive approach to achieving efficiency and scalability in multi- and many-core systems. Since most memory accesses in both sequential and parallel applications are either private (accessed only by one core) or read-only (not written) data, devoting the full cost of coherence to every memory access results in sub-optimal performance and limits the scalability and efficiency of the multiprocessor. This paper introduces TokenTLB, a TLB-based page classification approach based on exchange and count of tokens. Token counting on TLBs is a natural and efficient way for classifying memory pages, and it does not require the use of complex and undesirable persistent requests or arbitration. In addition, classification is extended with Cooperative Usage Predictor (CUP), a token-based system-wide page usage predictor retrieved through TLB cooperation, in order to perform a classification unaffected by TLB size. Through cycle-accurate simulation we observed that TokenTLB spends 43.6% of cycles as private per page on average, and CUP further increases the time spent as private by 22.0%. CUP avoids 4 out of 5 TLB invalidations when compared to state-of-the-art predictors, thus proving far better prediction accuracy and making usage prediction an attractive mechanism for the first time. | es_ES |
dc.description.sponsorship | This work has been jointly supported by the MINECO and European Commission (FEDER funds) under the project TIN2015-66972-C5-1-R and TIN2015-66972-C5-3-R and the Fundacion Seneca-Agencia de Ciencia y Tecnologia de la Region de Murcia under the project Jovenes Lideres en Investigacion 18956/JLI/13. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Institute of Electrical and Electronics Engineers | es_ES |
dc.relation.ispartof | IEEE Transactions on Parallel and Distributed Systems | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Data classification | es_ES |
dc.subject | Token counting | es_ES |
dc.subject | TLB | es_ES |
dc.subject | Private-shared | es_ES |
dc.subject | Read-only data | es_ES |
dc.subject | TLB Usage Predictor | es_ES |
dc.subject.classification | ARQUITECTURA Y TECNOLOGIA DE COMPUTADORES | es_ES |
dc.title | TokenTLB+CUP: A Token-Based Page Classification with Cooperative Usage Prediction | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1109/TPDS.2017.2782808 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//TIN2015-66972-C5-1-R/ES/TECNICAS PARA LA MEJORA DE LAS PRESTACIONES, COSTE Y CONSUMO DE ENERGIA DE LOS SERVIDORES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/f SéNeCa//18956%2FJLI%2F13/ | |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors | es_ES |
dc.description.bibliographicCitation | Esteve Garcia, A.; Ros Bardisa, A.; Robles Martínez, A.; Gómez Requena, ME. (2018). TokenTLB+CUP: A Token-Based Page Classification with Cooperative Usage Prediction. IEEE Transactions on Parallel and Distributed Systems. 29(5):1188-1201. https://doi.org/10.1109/TPDS.2017.2782808 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://doi.org/10.1109/TPDS.2017.2782808 | es_ES |
dc.description.upvformatpinicio | 1188 | es_ES |
dc.description.upvformatpfin | 1201 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 29 | es_ES |
dc.description.issue | 5 | es_ES |
dc.relation.pasarela | S\351136 | es_ES |
dc.contributor.funder | Ministerio de Economía, Industria y Competitividad | es_ES |
dc.contributor.funder | Fundación Séneca-Agencia de Ciencia y Tecnología de la Región de Murcia |