- -

QR-Factorization Algorithm for Computed Tomography (CT): Comparison With FDK and Conjugate Gradient (CG) Algorithms

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

QR-Factorization Algorithm for Computed Tomography (CT): Comparison With FDK and Conjugate Gradient (CG) Algorithms

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Rodríguez-Álvarez, MJ es_ES
dc.contributor.author Sánchez, F. es_ES
dc.contributor.author Soriano Asensi, Antonio es_ES
dc.contributor.author Moliner Martínez, Laura es_ES
dc.contributor.author Sánchez Góez, Sebastián es_ES
dc.contributor.author Benlloch Baviera, Jose María es_ES
dc.date.accessioned 2019-07-07T20:03:22Z
dc.date.available 2019-07-07T20:03:22Z
dc.date.issued 2018 es_ES
dc.identifier.issn 2469-7311 es_ES
dc.identifier.uri http://hdl.handle.net/10251/123290
dc.description.abstract [EN] Even though QR-factorization of the system matrix for tomographic devices has been already used for medical imaging, to date, no satisfactory solution has been found for solving large linear systems, such as those used in computed tomography (CT) (in the order of 106 equations). In CT, the Feldkamp, Davis, and Kress back projection algorithm (FDK) and iterative methods like conjugate gradient (CG) are the standard methods used for image reconstruction. As the image reconstruction problem can be modeled by a large linear system of equations, QR-factorization of the system matrix could be used to solve this system. Current advances in computer science enable the use of direct methods for solving such a large linear system. The QR-factorization is a numerically stable direct method for solving linear systems of equations, which is beginning to emerge as an alternative to traditional methods, bringing together the best from traditional methods. QR-factorization was chosen because the core of the algorithm, from the computational cost point of view, is precalculated and stored only once for a given CT system, and from then on, each image reconstruction only involves a backward substitution process and the product of a vector by a matrix. Image quality assessment was performed comparing contrast to noise ratio and noise power spectrum; performances regarding sharpness were evaluated by the reconstruction of small structures using data measured from a small animal 3-D CT. Comparisons of QR-factorization with FDK and CG methods show that QR-factorization is able to reconstruct more detailed images for a fixed voxel size. es_ES
dc.description.sponsorship This work was supported by the Spanish Government under Grant TEC2016-79884-C2 and Grant RTC-2016-5186-1. es_ES
dc.language Inglés es_ES
dc.publisher Institute of Electrical and Electronics Engineers es_ES
dc.relation.ispartof IEEE Transactions on Radiation and Plasma Medical Sciences es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject 3-D images reconstruction es_ES
dc.subject Computed tomography (CT) es_ES
dc.subject Conjugate gradient (CG) es_ES
dc.subject Feldkamp es_ES
dc.subject Davis, and Kress (FDK) es_ES
dc.subject Medical imaging es_ES
dc.subject QR-factorization algorithm es_ES
dc.subject Reconstruction algorithms es_ES
dc.subject Reconstruction toolkit (RTK) es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title QR-Factorization Algorithm for Computed Tomography (CT): Comparison With FDK and Conjugate Gradient (CG) Algorithms es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1109/TRPMS.2018.2843803 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TEC2016-79884-C2-1-R/ES/DESARROLLO DEL HARDWARE PARA SISTEMA DE DIAGNOSTICO POR IMAGEN MOLECULAR PARA CORAZON EN CONDICIONES DE ESTRES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//RTC-2016-5186-1/ES/Control objetivo del deterioro cognitivo mediante análisis de imagen de amiloide/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Instrumentación para Imagen Molecular - Institut d'Instrumentació per a Imatge Molecular es_ES
dc.description.bibliographicCitation Rodríguez-Álvarez, M.; Sánchez, F.; Soriano Asensi, A.; Moliner Martínez, L.; Sánchez Góez, S.; Benlloch Baviera, JM. (2018). QR-Factorization Algorithm for Computed Tomography (CT): Comparison With FDK and Conjugate Gradient (CG) Algorithms. IEEE Transactions on Radiation and Plasma Medical Sciences. 2(5):459-469. https://doi.org/10.1109/TRPMS.2018.2843803 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.org/10.1109/TRPMS.2018.2843803 es_ES
dc.description.upvformatpinicio 459 es_ES
dc.description.upvformatpfin 469 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 2 es_ES
dc.description.issue 5 es_ES
dc.relation.pasarela S\376719 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem