- -

Reduced computational cost prototype for street theft detection based on depth decrement in Convolutional Neural Network. Application to Command and Control Information Systems (C2IS) in the National Police of Colombia

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Reduced computational cost prototype for street theft detection based on depth decrement in Convolutional Neural Network. Application to Command and Control Information Systems (C2IS) in the National Police of Colombia

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Suarez-Paez, Julio Ernesto es_ES
dc.contributor.author Salcedo-González, Mayra Liliana es_ES
dc.contributor.author Esteve Domingo, Manuel es_ES
dc.contributor.author Gomez, J.A. es_ES
dc.contributor.author Palau Salvador, Carlos Enrique es_ES
dc.contributor.author Pérez Llopis, Israel es_ES
dc.date.accessioned 2019-07-10T20:03:16Z
dc.date.available 2019-07-10T20:03:16Z
dc.date.issued 2018 es_ES
dc.identifier.issn 1875-6883 es_ES
dc.identifier.uri http://hdl.handle.net/10251/123473
dc.description.abstract [EN] This paper shows the implementation of a prototype of street theft detector using the deep learning technique R- CNN (Region-Based Convolutional Network), applied in the Command and Control Information System (C2IS) of National Police of Colombia, the prototype is implemented using three models of CNN (Convolutional Neural Network), AlexNet, VGG16 and VGG19 comparing their computational cost measuring the image processing time, according to the complexity (depth) of each model. Finally, we conclude which model has the lowest computational cost and is more useful for the case of the National Police of Colombia. es_ES
dc.language Inglés es_ES
dc.publisher Atlantis Press es_ES
dc.relation.ispartof International Journal of Computational Intelligence Systems es_ES
dc.rights Reconocimiento - No comercial (by-nc) es_ES
dc.subject Deep Learning es_ES
dc.subject R-CNN es_ES
dc.subject AlexNet es_ES
dc.subject VGG16 es_ES
dc.subject VGG19 es_ES
dc.subject CNN (Convolutional Neural Network) es_ES
dc.subject Command and Control Information System (C2IS) es_ES
dc.subject.classification INGENIERIA TELEMATICA es_ES
dc.subject.classification LENGUAJES Y SISTEMAS INFORMATICOS es_ES
dc.title Reduced computational cost prototype for street theft detection based on depth decrement in Convolutional Neural Network. Application to Command and Control Information Systems (C2IS) in the National Police of Colombia es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.2991/ijcis.2018.25905186 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.description.bibliographicCitation Suarez-Paez, JE.; Salcedo-González, ML.; Esteve Domingo, M.; Gomez, J.; Palau Salvador, CE.; Pérez Llopis, I. (2018). Reduced computational cost prototype for street theft detection based on depth decrement in Convolutional Neural Network. Application to Command and Control Information Systems (C2IS) in the National Police of Colombia. International Journal of Computational Intelligence Systems. 12(1):123-130. https://doi.org/10.2991/ijcis.2018.25905186 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.org/10.2991/ijcis.2018.25905186 es_ES
dc.description.upvformatpinicio 123 es_ES
dc.description.upvformatpfin 130 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 12 es_ES
dc.description.issue 1 es_ES
dc.relation.pasarela S\371614 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem