Mostrar el registro sencillo del ítem
dc.contributor.author | Suarez-Paez, Julio Ernesto | es_ES |
dc.contributor.author | Salcedo-González, Mayra Liliana | es_ES |
dc.contributor.author | Esteve Domingo, Manuel | es_ES |
dc.contributor.author | Gomez, J.A. | es_ES |
dc.contributor.author | Palau Salvador, Carlos Enrique | es_ES |
dc.contributor.author | Pérez Llopis, Israel | es_ES |
dc.date.accessioned | 2019-07-10T20:03:16Z | |
dc.date.available | 2019-07-10T20:03:16Z | |
dc.date.issued | 2018 | es_ES |
dc.identifier.issn | 1875-6883 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/123473 | |
dc.description.abstract | [EN] This paper shows the implementation of a prototype of street theft detector using the deep learning technique R- CNN (Region-Based Convolutional Network), applied in the Command and Control Information System (C2IS) of National Police of Colombia, the prototype is implemented using three models of CNN (Convolutional Neural Network), AlexNet, VGG16 and VGG19 comparing their computational cost measuring the image processing time, according to the complexity (depth) of each model. Finally, we conclude which model has the lowest computational cost and is more useful for the case of the National Police of Colombia. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Atlantis Press | es_ES |
dc.relation.ispartof | International Journal of Computational Intelligence Systems | es_ES |
dc.rights | Reconocimiento - No comercial (by-nc) | es_ES |
dc.subject | Deep Learning | es_ES |
dc.subject | R-CNN | es_ES |
dc.subject | AlexNet | es_ES |
dc.subject | VGG16 | es_ES |
dc.subject | VGG19 | es_ES |
dc.subject | CNN (Convolutional Neural Network) | es_ES |
dc.subject | Command and Control Information System (C2IS) | es_ES |
dc.subject.classification | INGENIERIA TELEMATICA | es_ES |
dc.subject.classification | LENGUAJES Y SISTEMAS INFORMATICOS | es_ES |
dc.title | Reduced computational cost prototype for street theft detection based on depth decrement in Convolutional Neural Network. Application to Command and Control Information Systems (C2IS) in the National Police of Colombia | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.2991/ijcis.2018.25905186 | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions | es_ES |
dc.description.bibliographicCitation | Suarez-Paez, JE.; Salcedo-González, ML.; Esteve Domingo, M.; Gomez, J.; Palau Salvador, CE.; Pérez Llopis, I. (2018). Reduced computational cost prototype for street theft detection based on depth decrement in Convolutional Neural Network. Application to Command and Control Information Systems (C2IS) in the National Police of Colombia. International Journal of Computational Intelligence Systems. 12(1):123-130. https://doi.org/10.2991/ijcis.2018.25905186 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://doi.org/10.2991/ijcis.2018.25905186 | es_ES |
dc.description.upvformatpinicio | 123 | es_ES |
dc.description.upvformatpfin | 130 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 12 | es_ES |
dc.description.issue | 1 | es_ES |
dc.relation.pasarela | S\371614 | es_ES |