Mostrar el registro sencillo del ítem
dc.contributor.author | Zamora Martínez, Francisco Julián | es_ES |
dc.contributor.author | Castro-Bleda, Maria Jose | es_ES |
dc.date.accessioned | 2019-07-14T20:01:21Z | |
dc.date.available | 2019-07-14T20:01:21Z | |
dc.date.issued | 2018 | es_ES |
dc.identifier.issn | 0129-0657 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/123535 | |
dc.description.abstract | [EN] Neural Network Language Models (NNLMs) are a successful approach to Natural Language Processing tasks, such as Machine Translation. We introduce in this work a Statistical Machine Translation (SMT) system which fully integrates NNLMs in the decoding stage, breaking the traditional approach based on n-best list rescoring. The neural net models (both language models (LMs) and translation models) are fully coupled in the decoding stage, allowing to more strongly influence the translation quality. Computational issues were solved by using a novel idea based on memorization and smoothing of the softmax constants to avoid their computation, which introduces a trade-off between LM quality and computational cost. These ideas were studied in a machine translation task with different combinations of neural networks used both as translation models and as target LMs, comparing phrase-based and N-gram-based systems, showing that the integrated approach seems more promising for N-gram-based systems, even with nonfull-quality NNLMs. | es_ES |
dc.description.sponsorship | This work was partially supported by the Spanish MINECO and FEDER found under project TIN2017-85854-C4-2-R. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | World Scientific | es_ES |
dc.relation.ispartof | International Journal of Neural Systems | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Neural networks | es_ES |
dc.subject | Language modeling | es_ES |
dc.subject | Machine translation | es_ES |
dc.subject | Statistical machine translation | es_ES |
dc.subject | Embedded decoding | es_ES |
dc.subject.classification | LENGUAJES Y SISTEMAS INFORMATICOS | es_ES |
dc.title | Efficient Embedded Decoding of Neural Network Language Models in a Machine Translation System | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1142/S0129065718500077 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TIN2017-85854-C4-2-R/ES/AMIC-UPV: ANALISIS AFECTIVO DE INFORMACION MULTIMEDIA CON COMUNICACION INCLUSIVA Y NATURAL/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació | es_ES |
dc.description.bibliographicCitation | Zamora Martínez, FJ.; Castro-Bleda, MJ. (2018). Efficient Embedded Decoding of Neural Network Language Models in a Machine Translation System. International Journal of Neural Systems. 28(9). https://doi.org/10.1142/S0129065718500077 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://doi.org/10.1142/S0129065718500077 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 28 | es_ES |
dc.description.issue | 9 | es_ES |
dc.identifier.pmid | 29631501 | |
dc.relation.pasarela | S\375248 | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |