- -

Chemical stability in H2S and creep characterization of the mixed protonic conductor Nd5.5WO11.25-d

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Chemical stability in H2S and creep characterization of the mixed protonic conductor Nd5.5WO11.25-d

Show simple item record

Files in this item

dc.contributor.author Escolástico Rozalén, Sonia es_ES
dc.contributor.author Stournari, V. es_ES
dc.contributor.author Malzbender, J. es_ES
dc.contributor.author Haas-Santo, K. es_ES
dc.contributor.author Dittmeyer, Roland es_ES
dc.contributor.author Serra Alfaro, José Manuel es_ES
dc.date.accessioned 2019-07-14T20:02:23Z
dc.date.available 2019-07-14T20:02:23Z
dc.date.issued 2018 es_ES
dc.identifier.issn 0360-3199 es_ES
dc.identifier.uri http://hdl.handle.net/10251/123547
dc.description.abstract [EN] The integration of hydrogen permeable membranes in catalytic membrane reactors for thermodynamically limited reactions such as steam methane reforming can improve the per-pass yield and simultaneously produce a high-purity H-2 stream. Mixed protonic electronic materials based membranes are potential candidates for these applications due to their elevated temperature operation, good stability and potentially low cost. However, a specific mechanical behavior and stability under harsh atmospheres is needed to guarantee sufficient lifetime in real-world processes. This work presents the mechanical characterization and a study of the chemical stability under H2S containing atmospheres for the compound Nd5.5WO11.(25-8) Mechanical characterization was performed by micro indentation and creep measurements in air. Chemical stability was evaluated by XRD and SEM and the effect of the H2S on the transport properties was evaluated by impedance spectroscopy. Under H2S atmospheres, the total conductivity increases at 600 degrees C and 700 degrees C. The conductivity increase is attributed to the incorporation of S2- ions in oxide-ion sublattice. (C) 2018 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved. es_ES
dc.description.sponsorship This work was financially supported by the Spanish Government (ENE2014-57651-R and SEV-2012-0267 grants). Authors would like to thank to U. Gerhards, M. Fabuel, T. Osipova and Dr. Wesel for WDS and SEM analysis. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation MINECO/ENE2014-57651-R es_ES
dc.relation MINECO/SEV-2012-0267 es_ES
dc.relation.ispartof International Journal of Hydrogen Energy es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Lanthanide tungstate es_ES
dc.subject Proton-conducting oxide es_ES
dc.subject Hydrogen-permeable membrane es_ES
dc.subject H2S stability es_ES
dc.subject Mechanical properties es_ES
dc.title Chemical stability in H2S and creep characterization of the mixed protonic conductor Nd5.5WO11.25-d es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.ijhydene.2018.03.060 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.description.bibliographicCitation Escolástico Rozalén, S.; Stournari, V.; Malzbender, J.; Haas-Santo, K.; Dittmeyer, R.; Serra Alfaro, JM. (2018). Chemical stability in H2S and creep characterization of the mixed protonic conductor Nd5.5WO11.25-d. International Journal of Hydrogen Energy. 43(17):8342-8354. https://doi.org/10.1016/j.ijhydene.2018.03.060 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.org/10.1016/j.ijhydene.2018.03.060 es_ES
dc.description.upvformatpinicio 8342 es_ES
dc.description.upvformatpfin 8354 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 43 es_ES
dc.description.issue 17 es_ES
dc.relation.pasarela S\360033 es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES


This item appears in the following Collection(s)

Show simple item record